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Sharareh Babvey 
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A. P. Preethy 

ABSTRACT 

 

As technology scales down, coupling between nodes of the circuits increases and 

becomes an important factor in interconnection analysis. In many cases like the deep 

submicron technology (DSM), the coupling between lines (inter-wire capacitance) is 

strong and the power consumed by parasitic capacitance is non-negligible [1-6].  

In this work, we employ the differential low-weight encoding [1] to reduce energy and 

delay (transmission cost) on DSM buses. We propose an enumeration method that 

reduces the encoder table-size from O(2n) words to O(n) words, for an n-bit DSM bus, 

and so reduces the memory complexity significantly and facilitates energy and delay 

reduction due to addressing and fetching data from large lookup tables. We modify the 

energy and delay equations for DSM buses and develop new representations in terms of 

number of the same and opposite direction transitions on the bus and use them in our 

interconnect analysis. We also use these equations to develop formulas for computing the 



mean transmission cost per bit on DSM buses for both differential low-weight encoding 

and uncoded schemes. Using the interconnect analysis, we compute a help codeword 

(from the set of unselected codewords) on the fly and assign to each selected codeword. 

This low complexity step consists of simple operations and enables us to gain more cost 

reduction without increasing the table size or number of the bus lines. The simulation 

results for 16-bit, 32-bit and 64-bit buses at maximum rate (only one extra line added) 

show that the proposed encoding scheme achieves more than 10% cost reduction, and 

performs more than 2.5% better than to the original differential low-weight scheme, in 

the worst case. 
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Chapter 1 

Introduction 

 

 

Current trend of technology requires scaling down the size of devices and increasing 

the clock frequencies. Such scaling leads to exponential increase in leakage current and 

decrease in noise immunity for high speed circuits.  Shrinking feature sizes results in 

more interconnect levels packed closer together. Reducing the wire areas decreases the 

total wire capacitance. However, as technology scales down, not many lines are isolated 

or shielded anymore. Inductive effects and coupling between nodes of the circuit increase 

and become an important factor in interconnection analysis. As frequency of operation 

increases, additional metal patterns or ground planes may be required for inductive 

shielding. As supply voltage is scaled or reduced, crosstalk has become an issue for all 

clock and signal wiring levels.  

In many cases, like the deep submicron technology (DSM), the power dissipation, delay 

and crosstalk depend on the cross-activities between the nodes, as well. For DSM buses, 

the coupling between lines (inter-wire capacitance) is much stronger than the coupling 

between individual lines and ground and the energy consumption caused by parasitic 
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capacitance is non-negligible. Thus, both the intrinsic capacitance and parasitic 

capacitance should be taken into account [1, 18]. 

The near term solution adopted by the industry is the use of thinner metallization, 

reduced aspect ratios and less aggressive scaling of dielectric constant to decrease the 

capacitance. There are some limitations for fulfilling this goal, as some required 

characteristics of certain technologies (like area, current per area, etc.) may be violated.  

A wise solution is to employ encoding to reduce the effect of the capacitance both for 

the existing technologies, and future technologies with smaller capacitance. Encoding 

controls the transition activity, and so the cross-coupling effect and switching activities 

on the DSM bus by controlling the data sequences transmitted on the bus [1, 7-15].  

In [1, 7], P. Sotiriadis, A. Chandrakasan and V. Tarokh discussed two fundamental 

questions. What is the minimum energy required per information bit for communicating 

through DSM buses? And, is the minimum energy achievable using coding? They 

introduced equations for the minimum energy requirements and showed that the 

minimum energy is asymptotically achievable using coding. They also proposed a simple 

differential coding scheme (the differential low-weight coding) that achieved most of the 

possible energy reduction.  This efficient scheme employs differential coding and selects 

transition codewords of smaller Hamming weights for transmission on the bus. Thus, it is 

based on reducing the transition activity on the bus. However, this coding scheme 

requires tables of size O(2n) for an n-bit bus. Also, it does not take into account some 

characteristics of the DSM buses that can be exploited to reduce the transmission cost 

further. For example, on a DSM bus if two adjacent lines change both from 0 to 1 or vice 

versa (same direction transitions), less energy is consumed compared to two transitions 
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on two nonconsecutive lines. Conversely, if two adjacent lines change in opposite 

directions then more energy is consumed, compared to two transitions on two 

nonconsecutive lines.   The same direction and opposite direction bus transitions can be 

exploited to achieve more energy and delay reduction on the DSM bus. 

In this work, we propose an enumeration method that reduces the required table-size of 

the differential low-weight encoder from O(2n) words to O(n) words, for an n-bit bus. 

Thus, the enumeration reduces the memory complexity significantly, especially when n is 

large. Furthermore, it facilitates less power dissipation and delay, as it eliminates the need 

for addressing and fetching data from very large tables in memory.  

We modify the energy and delay equations for DSM buses further and develop a new 

representation in terms of number of the same and opposite direction transitions on the 

bus. These equations are very helpful for cost analysis in the DSM buses. We also 

develop equations for computing the mean transmission cost per bit on DSM buses for 

both differential low-weight encoding and uncoded schemes. We use simple operations 

like complement and rotate, to compute help codewords (from the set of unselected 

codewords) on the fly, and assign them to the selected codewords. Note that the help 

codewords enable us to achieve more cost reduction, without increasing the memory 

complexity or number of the bus lines. The simulation results show that the proposed 

encoding scheme achieves more cost (power and energy) reduction, compared to the 

original differential low-weight scheme. 
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Chapter 2 

Terms and Definitions 

 

In this chapter, we present some definitions and terms that are used throughout this work.  

2.1 Transmission Rate 

The transmission rate R is computed as R = m/n, when m-bit data sequences D ∈{0, 

1}m are transmitted on a bus with n> m lines. Set {0, 1}m includes all binary sequences of 

length m and so has 2m different elements.  

In fact, transmission rate is a measure of how many useful bits are transmitted on the bus 

during each use of bus. 

2.2 N-ary vs. Binary 

A binary sequence of length n is composed of elements in the set {0, 1}n. For example, 

011101 is a binary sequence of length 6. Similarly, an N-ary sequence of length n is 

composed of elements in the set {0, 1, 2 … N-1}n.  

2.3 Hamming Weight 

Hamming weight of a given binary sequence is the number of ones in that sequence. 

For example D = 10011100 has hamming weight equal to 4 and we show it by WH (D) = 

4. 
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2.4 Phrase Representation 

We may break each data sequence of length l to phrases, where each phrase consists of 

d ≥ 0 zeros and terminates with single nonzero symbol (1 for binary sequences). The 

phrase representation [16] uses the length of each phrase to represent the data sequence. 

Using this representation, each l–bit binary data sequence D is mapped to a unique phrase 

representation p from the alphabet {1, 2…n}, whose length l is equal to the Hamming 

weight of D [16]. We denote the mapping function by fphrase and we have fphrase (D) = p.  

For example, the phrases representing the 8-bit data D = 10011100 are: 1 001 1 1. The 

phrase representation for D is the sequence1311 of length 4. Thus, fphrase (10011100) = 

1311.  

For a given l the function fphrase (D) is one to one and has an inverse. The inverse 

function expands a phrase representation to a unique binary sequence of length l. For 

example, for l =8, f -1phrase (1321) = 10010110.   

2.5 Lexicographic Ordering 

Let {1, 2, 3… n}k denote all the n-ary permutations of  k symbols chosen from the set 

{1, 2, 3, … n} and let S be a subset of this set. By a lexicographic ordering for S we mean 

the usual dictionary ordering with the assumption that 1< 2< 3 <… < n-1 [16]. 

Specifically, for x= (x1, x2 … xk)∈S and y= (y1, y2 … yk)∈S we have x < y if there exists  

1≤ i≤ k such that xi < yi  and xj = yj for all 1≤ j < i .  

Let nS (x1, x2 … xu) denote the number of elements in S for which the first u coordinates 

are (x1, x2 … xu). Then, the lexicographic index or rank of x is given by [17]: 

∑∑
=

−

=
−=

k

j

x

t
jSS

j

txxxnxi
1

1

0
121 ),,...,,()(  
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Chapter 3 

Related Works 

 

 

 

In this chapter, we introduce the Deep Submicron Buses (DSM) and the important 

factors of energy consumption and delay on these buses. We also explain how to measure 

energy and delay in DSM buses. We present the concept of low transition-activity 

encoding [1, 7-15] for reducing power consumption and delay on DSM buses. Finally, we 

explain in detail, the differential low-weight encoding [1] that is a simple and efficient 

low transition-activity scheme upon which we base our proposed encoder.  

3.1 Deep Submicron Buses 

Current trend of technology requires scaling down the size of devices and increase 

clock frequencies. Such scaling leads to exponential increase in leakage current and 

decrease in noise immunity for high speed circuits.  Shrinking feature sizes results in 

more interconnect levels packed closer together. Reducing the wire areas decreases the 

total wire capacitance. However, as technology scales down, not many lines are isolated 
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or shielded anymore. Coupling between nodes of the circuit increases and becomes an 

important factor in interconnection analysis. Figures 3.1 and 3.2 compare the old silicon 

technology and the deep submicron technology (DSM) [1, 18, and 20]. 

 

 

Figure 3.1 The older silicon technology [18]. 

 

 

Figure 3.2 The Deep Sub-Micron technology [18]. 
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3.2 Energy Consumption in Deep Submicron Buses 

Consider a bus line carrying a binary sequence x(t), x(t +1), x(t +2) … . The energy 

consumption at time k for charging and discharging the parasitic capacitance between the 

line and ground depends only on the two values x(k-1) = u0 and x(k) = uN. In other words, 

the transition cost depends on the initial and final values of the bus. Equation 3.1 

generalizes this property to n bus lines. In this equation, ]...[ 00
2

0
1

0
nuuuu =  is the initial 

state of the bus, and ]...[ 21
N
n

NNN uuuu =  is the final state.  

∑
=

⊕=
n

i

N
iia uuT

1

0                                                                                                 (3.1) 

The transition activity Ta of a circuit node (or line) is a useful power measure when the 

node (line) is decoupled from other active nodes in the circuit [1]. For such nodes the 

power consumption can be simply computed by E = Ta CL V2
dd /2.  Equation 3.2 

computes the energy consumption for a bus with n lines. In this equation CL is the 

capacitance between the node and ground.  

2/2/)( 2

1

02
ddL

n

i

N
iiddLa VCuuVCTzwE 







⊕==→ ∑

=

                                          (3.2) 

Coupling between nodes implies that power dissipation depends also on their cross-

activities and therefore, Equation 3.2 is not valid anymore. In many cases like the deep 

Submicron Buses, coupling between lines is even stronger than the coupling between a 

line and the ground.  
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Figure 3.3 shows an approximate model for a DSM technology bus [1-3]. This model 

considers the boundary capacitors due to fringing effects, capacitors due to coupling 

between a line and the ground, and coupling between two adjacent lines.  

 

 

Figure 3.3 A DSM bus model [3]. 

The energy consumption during transition from the initial bus state u0 to the final bus 

state uN is given by [3, 6]: 

2/)()()( 2000
dd

TNTNN VuuCuuuuE −⋅⋅−=→                                                      (3.3) 

Equation 3.4 shows the matrix C, where
L

I

c
c

=λ . cI is the inter-wire capacitance per 

unit length between adjacent lines and cL is the parasitic capacitance per unit length 

between each line and ground. The constant λ is a real non-negative parameter that 

depends on physical parameters of lines, such as geometry, size, distance between the 

lines and the manufacturing technology. For modern deep sub-micrometer technologies, 

λ can be as high as 8 (for example in 0.13- m technologies).  

LcC .

2100...0
210...0

::::::
0...210
0...021
0...0021



























+−
−+−

−+−
−+−

−+

=

λλ
λλλ

λλλ
λλλ

λλ

                                   (3.4) 
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For the obsolete non-submicron (NSM) technologies λ is practically zero and C reduces 

to a scalar matrix. Thus, in the case of DSM technologies (λ > 0), unlike the case of NSM 

(λ = 0), the cost function has terms corresponding to interactions between the values 

transmitted on different lines. Figure 3.4 shows more details of the approximate model of 

a DSM bus with two parallel lines [4]. There is a driver for each line (Each line is 

connected to Vdd). A driver can be modeled by a voltage source with a series resistance rd. 

 

Figure 3.4 DSM bus model for a bus with two parallel lines [4]. 

3.3 Delay in Deep Submicron Buses 

A significant noise source in current processes is the coupling between lines. This 

coupling is even stronger than the coupling between a line and the ground. Consider a bus 

with n lines, each of length L. Let ]...[ 00
2

0
1

0
nuuuu =  be the initial condition of the bus, 

where ( ) }1,0{,0, 00 ∈= kkk uLVu is the voltage at the start of the line k of the bus. Also, 
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]...[ 21
N
n

NNN uuuu =  is the final condition of the bus, where ( ) }1,0{,, ∈∞= N
kk

N
k uLVu is 

the voltage at the end of line k of the bus (Figure 3.4). 

The delay of each line k is notified with Dk. The sum of the delays in the bus is 

computed by Equation 3.5, as follows [4, 5]. In this equation, r is the resistance of line 

per unit length. Also, rT is a constant depending on resistance of each line and the line 

driver per unit length, and the line length. 

( ) ( ) ( ) T
NTNn

k

N
k rLuuCuuuuD ⋅⋅−⋅⋅−=∑

=

00

1

0,                                                             (3.5) 

rLrr dT ⋅+=
2

 

Equation 3.6 shows the matrix C. In this equation,
L

I
c
c

=λ , cI is the inter-wire 

capacitance per unit length between adjacent lines and cL is the parasitic capacitance per 

unit length between each line and ground.  

LcC .

2100...0
210...0

::::::
0...210
0...021
0...0021



























+−
−+−

−+−
−+−

−+

=

λλ
λλλ

λλλ
λλλ

λλ

                                              (3.6) 

3.4 Low Transition-Activity Encoding for Deep DSM Buses 

Equations 3.3 and 3.5 show that for DSM buses, energy and delay depend on the 

sequence of data transmitted on the bus. Thus, we may decrease energy and delay on the 

bus by controlling the sequence of data transmitted on the bus.  
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Encoding is an efficient way for controlling the data sequence that is transmitted on the 

bus. Using encoding we may map the high cost codewords to some other codewords with 

lower costs. One approach is to add redundancy in the form of extra bus lines. To be 

effective, the encoder and decoder systems should have small energy consumption and 

delay values [1, 7-15].  

Definition 1: Code C is a mapping from elements in set Qm = {0, 1}m to the elements in 

set Qn = {0, 1}n, where n > m. Each sequence d∈Qm is mapped to one and only one 

element d′∈Qn that satisfies a property of interest. As a result, some elements of Qn are 

not used at all. 

Consider a bus with n lines and let Qn = {0, 1}n be the set of all binary vectors of length 

n. In an uncoded scheme, any data sequence d∈Qn can be transmitted on the bus. Figure 

3.5 depicts both uncoded and coded transmission on the bus [19]. 

Adding extra lines to the bus, while the data stream is unchanged increases the capacity 

of the transmission channel (the bus). Consider an n-bit bus, which is supposed to 

transmit data sequences d∈Qn. The bus has the potential to transmit 2n different 

sequences, while there are only 2m < 2n different data sequences. Thus, some bus states 

are not used. One may choose the uncoded bus states to be the expensive ones.   
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Figure 3.5 a) Transmit uncoded data, b) Transmit coded data, c) Signaling. [19] 

3.5 Differential Low-Weight Encoding Approach 

3.5.1 Encoding Scheme 

The Bus state at time t is the sequence which is on the bus at time t. The encoding 

scheme [1] includes the following steps: 

1. Extend the bus from m lines to n > m lines. 

2. Choose 2m codewords out of all possible codewords of length n > m such that the 

Hamming weight for the selected codewords are smaller than a given threshold w. 

(choose codewords of low Hamming weights). 
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3. Map each bus input data d of length m to a valid codeword c of length n, using 

function F. (Function F uses a table to complete the mapping). 

4. XOR st, the bus state at the current time t with the codeword corresponding to the 

bus input data. So, put st+1 = c ⊕ st on the bus.  

As the code words have small weight, there will be small number of transitions on the 

bus, and so the transmission cost decreases. Figure 3.6 depicts the encoding and decoding 

schemes in the differential low-weight encoding approach. 

3.5.2 Decoding Scheme 

Each received codeword (st+1) is decoded [1] to obtain the corresponding input data, 

using the following steps: 

1. Use delay to access the previous bus state st and compute codeword c = st+1 ⊕ st.  

2. Use the function F to find the corresponding data input d for codeword c. 

Figure 3.6 depicts the encoding and decoding schemes in the differential low-weight 

encoding approach. 

 

 

Figure 3.6 The differential low-weight encoding and decoding [1]. 
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3.6 Energy Reduction by Differential Low Weight Encoding  

Figure 3.7 shows simulation results for the differential low weight scheme. In this 

figure m/n is the code rate (number of useful bits transmitted per bus use). Eb(Y) is energy 

per bit for the encoded scheme and Eb(X) is energy per bit for uncoded data. Note that 

Eb(Y) = Eb(X) when no bus lines or too many bus lines are added. For example, for 4-bit 

data the optimal energy reductions happens at rate m/n = 0.5, where 4 out of sixteen 4-bit 

sequences are chosen as codewords. 

 

Figure 3.7 Energy reduction by low-weight encoding and decoding [1]. 
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Chapter 4 

Energy and Delay Analysis for DSM Buses  

 

 

In this chapter, we analyze the transmission energy and delay equations and show that 

the energy consumption and delay for a given DSM bus are different only by a scalar 

term. We introduce a common cost function which can control both. Reducing the cost 

function by encoding or any other approach results in both energy and delay reduction. 

We modify the energy and delay equations for DSM buses and develop new 

representations in terms of number of the same and opposite direction transitions on the 

bus and use them in our interconnect analysis. Then, we drive closed form formulas for 

computing the mean cost per bit over all possible initial bus states, for both differential 

low-weight encoding [1] and uncoded approaches.  

4.1 Cost Function for Energy and Delay in DSM Buses 

Using the equations introduced in Chapter 3, the energy cost for transition T from the 

initial bus state w = (w1, w2 … wn) to the final bus state z= (z1, z2 … zn) is computed by 

Equation 4.1, where zi, wi ∈{0, 1}, T = z- w, the constant 2/2
ddVK =  is a scalar 

depending on the driver voltage and C is the capacity matrix.  
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KCTfwzE ⋅=→ ),()(    

TCTCTf T ⋅⋅=),(                                                                                                         (4.1) 
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Similarly, the delay is computed by Equation 4.2, where T = z- w and TrLk ⋅=' is a 

scalar depending on the length and resistance per length for each bus line. Note that the 

capacitance matrix C and the scalars K and K′ depend on physical characteristics of the 

bus. 

( ) '),(
1

KCTfwzD
n

k
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Equations 4.1 and 4.2 indicate that for a given DSM bus, the energy and delay are 

different only by a scalar term and depend on the function f (T, C). This function is a 

measure of the transmission energy and delay. We call it the cost function and we focus 

on decreasing the transmission energy and delay cost on the DSM bus by decreasing this 
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cost function. Cost function f (T, C) depends on the sequence of the data transmitted on 

the bus. Thus, we may decrease f (T, C) and consequently, the transmission energy and 

delay on the DSM buses by controlling the sequence of data transmitted on the bus.  

For a DSM bus with n lines, the transition vector is denoted by T= (t1, t2 … tn), where ti 

shows the transition activity for line i. Therefore, f (T, C) can be computed as follows:  

 

TCTCTf T ⋅⋅=),(  
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Divide both sides of Equation 4.3 by constant cL results in Equation 4.4. 
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And, we complete the matrix multiplication and simplify further to get Equation 4.5. 
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Knowing that T = (t1, t2 … tn) = z-w, each ti for 1≤ i≤ n could have the following values: 
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Using Equations 4.5 and 4.6, we can see that the ‘no-transition case’ leaves 

LCCTf /),( unchanged, and so imposes no extra energy or delay cost on the system. 

However, each transition on a line adds as much as (1+2λ) to the cost function. 

Moreover, each same direction transition on adjacent lines (both lines go from 0 to 1 or 

vice versa) decreases the cost by 2λ, while an opposite direction transition on two 

adjacent lines (one goes from 1 to 0 and the other from 0 to 1) increases the cost by 2λ. In 

general, if codeword c results in T transitions on the DSM bus from which t+ transitions 

are in the same direction and t- in the opposite direction, then the following formula gives 

the total transition cost on DSM buses for codeword c. 

−+ ×−×+×+= ttTCCTf L )2()2()21(/),( λλλ                                                      (4.7) 



 20

Our goal is to employ encoding to map high cost data sequences with large cost 

function values to codewords with lower costs. Thus, we are interested in codewords that 

result in minimum number of transitions (less transition activity). Meanwhile, we like the 

same direction transitions to happen on adjacent lines and the opposite direction 

transitions on non-adjacent lines, as far as possible.   On the other hand, we cannot be 

very selective on the codewords, as it decreases the number of codewords selected for 

transmission on a DSM bus of a given length and so decreases the transmission rate. 

4.2 Transmission Cost Analysis   

In this section, we compare the mean cost for different transition codewords of 

Hamming weight wH to investigate how the location of ones in the codeword affects the 

transmission cost.  

Let 0 denote a run of x > 0 zeros. Ccont = 011…10 denotes a transition codeword with a 

continuous run of 1s and Cdiscont = 01010…010 denotes a transition codeword for which 

there is at least one zero between any two consecutive 1s. Recall that a transition vector 

with adjacent 1s may lead to same direction or opposite direction adjacent transitions 

based on the initial bus state. The question is how does the transition codewords Ccont and 

Cdiscont compare, in terms of transmission cost. We start with computing the mean cost for 

a given codeword of Hamming weight wH over different initial bus states.   

For a transition codeword with Hamming weight wH, there are exactly wH nonzero 

transitions. Suppose that the number of the same direction and the opposite direction 

transitions are x+ and x-, respectively.  Thus, using Equation 4.7, the cost function can be 

computed as follows. 
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In the following sections, we first give closed form equations for the mean cost per bit 

of transition sequences like Ccont and Cdiscont, and then we generalize these equations for 

codewords of any given form. 

4.2.1 Cost Comparison for Transition Codewords Cdiscont and Ccont 

 For Cdiscont, the transition cost is simply (1+ 2λ) ×wH independent of the initial bus state 

So. For Ccont however, So is an important factor. Any zero is equivalent to no transition 

and so no cost. For adjacent 1s, we should identify how many transitions are in the same 

direction and how many are not. Note that for a codeword of weight wH, there may be at 

most wH-1 pairs of consecutive transitions, some of which are in the same direction and 

some in the opposite direction.  

The number of all possible combinations of selecting i out of n objects is computed 

by
)!(!

!
ini

n
i
n

−×
=








. Similarly, 







 −
×= −x

w
N H 1

21  gives the number of all possible 

combinations of x- opposite direction transitions out of wH-1 pairs of consecutive 

transitions. Multiplication by a factor of 2 is required, as the transitions could be from 0 

to 1 or from 1 to 0. Table 4.1 summarizes different values of N1, as well as the cost per 

transition codeword for different values of x- and x-. 

For example, consider the transition sequence Ccont = 111. There are 







×=

0
2

22  

possible initial bus states, namely S0 = 000 and S0 = 111 that result in x- = 0 and 
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consequently x+ = 2. There are four possible values that result in x- = 1 and so x+ = 1, 

which are S0 = 011, S0 = 100, S0 = 110, S0 = 001. Finally, S0 = 010 and S0 = 101 result in 

x- = 2 and x+= 0. 

 

 
x+ 

 
x- 

 #of possible combinations 
for x- opposite direction 

transitions 

Transition  
 Cost per codeword 

(computed by Equation 4.8) 
wH-1 0 








 −
0

1Hw ×2 wH+ 1×(2λ) 

wH-2 1 







 −
1

1Hw ×2 wH+ 3× (2λ) 

wH-3 2 







 −
2

1Hw ×2 wH+ 5× (2λ) 

… … … … 
0 wH-1 









−
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1
1

H

H
w
w ×2 wH+ (2(wH-1)+1)×(2λ) 

Table 4.1 Transition cost for Ccont and different initial bus states. 

Recall the following properties of the combination operation. 
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For odd values of n, we have: 
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Combine Equations 4.9 - 4.11 to obtain the following equation. 
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Similarly, for even values of n, we have: 
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And finally, combine Equations 4.9, 4.10 and 4.14 to obtain the following equation. 
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Using Table 4.1, the total cost over all possible initial bus states, denoted by COST is 

computed as follows: 
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Use the associative property of summation to regroup the terms in parenthesis of 

Equation 4.17 and obtain two groups as factors of wH and 2λ.  
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Using Equation 4.9 we obtain: 
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Now, we simplify the summation term in Equation 4.19 to simplify COST further. 

 For odd values of wH -1, replace n with wH -1 in Equation 4.12.  
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And use Equation 4.10 to get: 
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So, we finally obtain: 
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Similarly, for even values of wH -1 we obtain Equation 4.22 as follows. 

)2(

2/)1(
1

)1)2/1(2(
12/)1(

1
)(2

...
1

1
)(2

0
1

)(2

2/)1(
1

)1)2/1(2(

12/)1(
1

))1)1
2

1(21)1
2

1(2(

...
1

1
)1)1)1((23(

0
1

)1)1(21(
1

)12(

1

1

0

−

−

=

=









−
−

+−+







−−

−
+

+






 −
+







 −
=









−
−

+−+









−−

−
++

−
++−

−
+

+






 −
+−−++







 −
+−+=







 −
+∑

Hw
H

H

H
H

H

H
H

H
H

H
H

H

H
H

H

HHH

H
H

H
H

Hw

i

H

w

w
w

w
w

w
w

w
w

w
w

w
w

w

w
www

w
w

w
w

i
w

i

 

)2)((
1

)12(12 1
1

0

−
−

=
=







 −
+⇔+= ∑ Hw

H
Hw

i

H
H w

i
w

ikw                                               (4.22) 

Equations 4.21 and 4.22 indicate that: 
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Combining Equations 4.19 and 4.23, results in:  
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There are 2wH different initial bus states (S0). Therefore, the mean cost for Ccont over 

different initial bus states, denoted by contCCost is computed as follows. 
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Equation 4.25 shows that the mean transition cost over all possible original bus states 

(So) is simply wH (1+ 2λ), for both Cdiscont, and Ccont. 

4.2.2 Mean Transition Cost for Codewords  

We can generalize the above property to any codeword of hamming length wH, and of 

the general from Cl = 1 0 1…, where 0 and 1 denote a run of x > 0 zeros and ones, 

respectively. The integer l shows the number of runs of ones (number of 1s) in the 

codeword.  

Theorem 1: The mean cost per bit, over all possible initial bus states is the same for all 

codewords of equal Hamming weight, and is computed by wH (1+ 2λ). 
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Proof: 

We use mathematical inference to prove that the cost per bit for Cgeneral is equal to wH 

(1+ 2λ).  

a. In Section 4.2.1 we showed that the mean transition cost over all possible original 

bus states (So) for C1 = Ccont is wH (1+ 2λ). Thus, the initial inference condition is 

satisfied. 

b. We show that if the mean transition cost over all possible original bus states for 

Ck is wH ×(1+ 2λ) then it is so, for Ck+1 = Ck  0 1, as well. The proof is as follows. 

Table 4.1 indicates that the transmission cost may be one of the values c0 = wH +1(2λ), 

c1 = wH+3(2λ)… cwH -1 = wH+ (2(wH-1) +1) (2λ) based on the number of the same and 

opposite direction transitions. Suppose Ni is the number of initial bus states that result in 

cost ci and the Hamming weight for Ck denoted by wH (Ck) is equal to x1. For transition 

sequence Ck, we have: 
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According to the inference assumption, 

1
1 2)21( xxCOST ×+= λ                                                                                              (4.27)                              
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And so, the right hand sides of Equations 4.26 and 4.27 are equal and we have the 

following: 
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Suppose the length for the k+1th run of ones in Ck+1 is x2. Thus, the Hamming weight 

for Ck+1 is x1 + x2 and from Equation 4.25 the following Equation holds: 
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11 2/Cost xx

kCkC COST +
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Using Equation 4.26 with wH = x2, for only the last run of ones in Ck+1, we have: 
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To compute the total cost for Ck+1 = Ck 0 1, we should consider Ck, as well as the last 

run of ones. We compute the cost for each of these separately, and then add up the 

individual costs to obtain the total cost. Equation 4.31 gives the total cost for Ck+1. 
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Using associative property of the summation, we place the first terms in the entire 

parenthesis in one group, and the second terms in another one to obtain: 
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Then, we simplify the terms inside the brackets using Equations 4.9 and 4.30 and factor 

these terms out. 
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Note that 11
1110 2 ... −
− =+++ x

xNNN and we can simplify the terms inside the 

brackets, using Equation 4.28. 
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And finally from Equation 4.29, 
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Equation 4.33 proves step b of the inference and so we can conclude that the mean 

transition cost per bit, over all possible initial bus states (So) is simply wH (1+ 2λ), for any 

given codeword Cl. ■ 
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4.3 Transmission Cost for Differential Low-Weight Encoding  

In this scheme, only the codewords with Hamming weight smaller than a threshold wmax 

are selected. As explained in the previous section, the mean cost over initial bus states is 

the same for all the codewords of the same Hamming weight wH and can be computed by 

wH (1+ 2λ). Thus, mean energy per bit for a differential low-weight code of length n is as 

follows: 
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4.4 Transmission Cost for Uncoded Scheme 

In the uncoded scheme, every sequence in the set S = {0, 1}n may be transmitted on the 

bus. Thus, the transition vectors are all elements of set S and the mean energy per bit is 

computed as follows:  
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As Equation 4.35 shows the mean cost per bit is a constant depending on λ when no 

encoding is used. Note that transmission rate in this case is equal to 1. Thus, the rate is 

ideal, while the cost is high compared to the encoded case. 
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Chapter 5 

The Proposed Encoding Scheme 

 

 

As explained in the previous chapters, the differential low weight encoding is an 

efficient and low complexity scheme that achieves most of the transmission cost 

reduction possible, on DSM buses [1].  

In this chapter, we propose an enumeration method to be used with the differential low-

weight coding. This enumeration method reduces the mapping table size from O(2n) 

words to O(n) words, for an n-bit bus. Thus, it reduces the memory complexity 

significantly, especially when n is large. Furthermore, it facilitates less power dissipation 

and delay, as it eliminates the need for addressing and fetching data from very large 

tables in memory.  
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Furthermore, we exploit the same direction and opposite direction transitions to achieve 

more cost reduction. For each selected low weight codeword, we compute a help 

codeword (from those high weight codewords which are not selected) on the fly. The 

help codewords result in lower cost for some initial bus states. They are computed by 

simple operations like complement and rotate and so reduce the cost without any extra 

memory or bus lines.  

This chapter is organized as follows. First we propose a new set for representing the 

codewords and the Low-Weight order for this set. We also define a number of operations 

on this set. Then, we explain the proposed encoding scheme and application of the Low-

Weight order in the proposed enumeration process, in detail. At the end, we present the 

Help codewords and simulation results. For the terms and definitions used in the 

following sections, refer to Chapter 2. 

5.1 Low-Weight Order 

Let set Pk = {1, 2, 3… n}k denote all the n-ary permutations of  k symbols (not 

necessarily distinct) chosen from the alphabet {1, 2, 3… n} such that the sum of the 

digits of each permuted sequence is smaller than or equal to n. Thus, permutation p ∈ Pk 

is of length k and may be denoted as d1, d2…dk where di ∈ {1, 2, 3… n}. For simplicity, 

we denote p with d1d2…dk when n <10 (no comma between symbols). We define the set 

Pk, 1 ≤ k ≤ n as the union of sets P1, P2... and Pn. Using the phrase representation 

introduced in Chapter 2.4, each permutation p ∈ Pk may be expanded to obtain a binary 

sequence c. Note that the constraint on the sum of the symbols of p ∈ Pk guarantees that 

the length of c is smaller than or equal to n and transmitting it on a DSM bus requires no 

more than n lines. In other words, the length of the binary sequence corresponding to 
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each permutation is limited to n. We require this constraint, as we have a limited number 

of bus lines for data transmission. 

Recall the lexicographic ordering introduced in Chapter 2.5. This ordering scheme 

considers the rightmost digit as the least significant digit (LSD) and the leftmost one as 

the most significant digit (MSD), in computing the lexicographic index (rank). 

Alternatively, we define the low-weight order for which the rightmost symbol is the MSD 

and the rank for x= (x1, x2 … xk)∈ Pk, 1≤ k≤ n is computed by the Equation 5.1. In this 

equation, nk
S(x1, x2 … xu) denotes the number of elements in Pk, 1≤ k≤ n for which the 

first u coordinates are (x1, x2 … xu). Also, |Pk| denotes the cardinality of set Pk. 
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Note that extend the Low-Weight order extends to different values of 1 ≤ k ≤ n. 

Specifically, for x= (x1, x2 … xk) ∈Pk1 and y= (y1, y2 … yk)∈Pk2 we have x < y if k1 < k2. 

So, f -1
phrase(x) has a lower Hamming weight compared to f -1

phrase(y). We exploit this 

ordering to decrease the transmission cost by choosing the lower weight codewords 

before and sooner than the higher weight ones.  

For example, Table 5.1 shows the elements of set Pk with 1≤ k≤ 5 and from alphabet 

{1, 2, 3, 4, 5}, sorted in Low-Weight order. 
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index         p Index         p 
1 1             
2 2             
3 3             
4 4             
5 5             
6 11           
7 21           
8 31           
9 41           
10 12           
11 22           
12 32           
13 13           
14 23           
15 14           

 
 

16 111 
17 211         
18 311         
19 121         
20 221         
21 131         
22 112         
23 212         
24 122         
25 113         
26 1111       
27 2111       
28 1211       
29 1121       
30 1112       
31 11111     

 
 
Table 5.1 Low-Weight order for entries of set Pk, 1≤ k≤ 5.  
 
 

5.2 Operations for Low-Weight Ordered Numbers 

5.2.1 Low-Weight Count  

Low-Weight count enables us to find the n-bit codeword Ci+1 that follows (appears 

1codeword after) a given n-bit codeword Ci, in Low-Weight order. The algorithm is 

depicted in Figure 5.1. In this algorithm Ci denotes the f -1
phrase of an element pi in set Pk = 

{1, 2, 3… n}k, 1≤ k≤ n. 
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if Ci terminates in 0   /*case 1*/ 
 

Shift Ci to right by 1 to obtain Ci+1.  
    

else 
 

Find the first phrase p in Ci. 
 
if there exists a 1 after phrase p in Ci  /*case 2*/ 
 

         C′ = Shift only phrase p to left by 1     
      
     else   /*case 3*/ 
 
         C′ = Insert a 1 at the beginning of the sequence and remove a 0 in p 
 
     Ci+1 = Move the zeros of the first phrase in C′ to the end of the sequence.  
 

Figure 5.1 The Low-Weight count algorithm. 

 

Examples: 

Case 1. In Table 5.1, the 11th entry is Ci = f -1
phrase (22) = 01010 and the 12th entry is 

Ci+1= 00101 = f -1
phrase (32). 

Case 2. In Table 5.1, the 9th element is Ci = f -1
phrase (41) = 00011, p = 0001 (bits 1 to 4 

of Ci), C′ = 00101 and Ci+1= 10100 = f -1
phrase (12). Note that 12 is the 10th entry in 

Table 5.1. 

Case 3. In Table 5.1, the 25th element is Ci = f -1
phrase (113) = 11001, p = 001 (bits 3 to 

5 of Ci), C′ = 11101 and Ci+1= 11110 = f -1
phrase (1111). Note that 1111 is the 26th 

entry in Table 5.1. 
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5.2.2 Low-Weight Division  

Figure 5.2 shows the division algorithm. The Low-Weight division of an integer x by a 

list of integers (y1, y2 … yk) is denoted by fdiv (x, (y1, y2 … yk)). Similar to normal integer 

division, this operation is implemented by successive subtractions. The only difference is 

that instead of subtracting a fixed integer (dividend) all the time, each time one of the 

elements in the dividend list is subtracted from the divider x.  

The operation fdiv (x, (y1, y2 … yk)) results in the quotient q and remainder r if and only if  

x = y1+ y2 +… +yq+ r, where r < yq. 

 

/*Low-Weight Divide algorithm*/ 
 
i=1, q=0 
 
While x ≥ yi 
 
    x = x - yi 
 
    q = q+ 1 
 
    i = i+1; 
 
r = x; 

 

Figure 5.2 The Low-Weight division algorithm. 

5.2.3 Low-Weight Addition   

Consider the first vector of weight wH in Low-Weight order for different values of 1 ≤ 

wH ≤ n. For example, for n = 4, these vectors are 1, 11, 111, and 1111. Recall that the 

corresponding binary codewords are 1000,1100,1110,1111, respectively. We denote such 

codewords with Hw1 to indicate that the number of ones is wH ≤ n.  



 40

Low-Weight addition enables us to find the n-bit codeword Ci+x that appears x (a given 

integer in base 10) codewords after Ci = Hw1 , the first codeword of weight wH in Low-

Weight order.  This operation is required for the enumeration process and we explain it, 

in detail.  

Note that the number of trailing zeros for )1(1
Hwphrasef − is n- wH. We define y = n+1- wH. 

In fact, y -1 is the number of trailing zeros for )(1
iphrase Cf − . Consider Hw1 and its phrase 

representation p = d1, d2… dwH, where di = 1 for 1≤ i≤ wH. The following rules are used to 

add p with a (an integer in base 10) in the Low-Weight addition. 

 

Rule 1: if a ∈{1, 2 … y-1} then add integer ‘a’ to the leftmost 1 in phrase 

representation p. 

 

Rule 2: ∑
−

=
≥≥−=
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xyiya

0
2forif , then the 2nd leftmost digit in the phrase 

representation p is increased by x +1.  
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Rule 4: 2for)(if 2 ≥≥= ∑
=

xyifX
y

xi
, then the 4th leftmost digit in the phrase 

representation p is increased by (y- x) +1. 

… 

Define ∑
=

− −==
y

i
Hkk wkifyf

1
1 2),()( , 

The final Rule: 2for)(if ≥≥= ∑
=

xyifX
y

xi
k , then the wH

th (last) leftmost digit in the 

phrase representation p is increased by (y- x) +1. 

Note that kiyfyfyf iii ...2,1for)()()1( 1 =−=− − . 
 
  

For example, consider p =1111 = d1d2d3d4, the phrase representation of c =111100000 

for n = 9 and List 1 (at the end of this Chapter) which shows all codewords with wH = 4 

and n = 9 in Low-weight order. Recall that y = n+1- wH= 6. 

 

If X = 1 then d1 increases by 1. 

If X = 2 then d1 increases by 2. 

… 

If X = y -1 =5 then d1 increases by 5. 

 

If X = y = 6 then d2 increases by 1. 

If X = y + (y – 1) = 6 + 5 = 11 then d2 increases by 2. 

… 

If X = y + (y – 1) + … + 2 = 6 + 5 + 4 + 3 + 2 = 20 then d2 increases by 5. 
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If X = f1(y) = 6.7/2 = 21 then d3 increases by 1. 

If X = f1(y)   + f1 (y – 1) = 21 + 15 = 36 then d3 increases by 2. 

… 

If X = f1(y)   + f1 (y – 1) + … + f1 (2) = 21 + 15 + 10 + 6 + 3 = 55 then d3 increases by 5. 

 

If X = f2(y) = 21 + 15 + 10 + 6 + 3 + 1= 56 then d4 increases by 1. 

If X = f2(y)   + f2 (y – 1) = 56 + (56 -21) = 91 then d4 increases by 2. 

… 

If X = f2(y)   + f2 (y – 1) + … + f2 (2) = 56 + 35 + … = 125 then d4 increases by 5. 

 

For ordinary integers (of any base), any given digit increases over equal distances 

determined by base. For example, let x be a natural number. The integer 20 appears x 

integers after 10 in base x. Similarly, the integer 30 appears x integers after 20.  

However, using the Low-Weight order, the digits of phrase representation p of a given 

binary sequence c, do not increase on equal intervals. This fact is indicated by the rules of 

the Low-Weight addition introduced above. For example, consider List 1 at the end of 

this chapter. There are 5 integers between 1111 and 1211, while 10 integers appear 

between 1211 and 1311. Although a fixed interval over which a given digit increases 

does not exist, it is possible to predict how the interval changes for each digit of p as the 

above rules imply.   

To increase phrase p of length wH by X (in base 10), we compute the amount of increase 

for the rightmost digit in p (the most significant digit in Low-Weight order sequences) 
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using the Low-Weight division operation. Then, we update X, and repeat the same 

procedure for the following digits until the leftmost digit (the least significant digit in 

Low-Weight order sequences) is processed or X is zero. The following algorithm 

completes Low-Weight addition in O(n×wH
2) time and O(n)  space. 

 
/*Low-Weight increase by X algorithm*/ 

/*X ≤ 








Hw
n

-1 */ 

/* p = d1d2…dwH, di =1 for 1≤ i≤ wH*/ 
 
/*Find y, the number of trailing zeros of the …*/  
/* sequence represented by p*/ 
 
y = n - wH +1 
 
for each digit di , wH ≥ i ≥  2 
 
     Y = (y, y-1, y-2…2, 1) 
 
     for counter = 1 to wH-2 

           ∑
=

=
y

ji
ij YY  

 
     Evaluate fdiv (X, Y) to get q and r 
 
     /* Update X */ 
     X=r 
 
     /* Update phrase p*/ 
     di =di +q 
 
     /* Update y */ 
     y =y – q 
 
d1 =d1+ r 
 

Figure 5.3 The Low-Weight addition algorithm. 
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5.2.4 The Low-Weight Subtract    

Consider the phrase representation p0 as the first vector of weight 1 ≤ wH ≤ n in Low-

Weight order. Also, consider p as a given codeword of same Hamming weight as p0. 

Suppose that codeword p appears cnt codewords after p0, in Low-Weight order. The 

Low-Weight subtract operation takes p0 and p and computes cnt, the distance between p0 

and p.  

 
/*Low-Weight subtract algorithm*/ 
 
/* p = d1d2…dwH, di =1 for 1≤ i≤ wH*/ 
 
y = n - wH +1 
 
for each digit di , wH ≥ i ≥  2 
 
     cnt = 0 
 
     Y = (y, y-1, y-2…2, 1) 
 
     for counter = 1 to wH-2 

           ∑
=

=
y

ji
ij YY  

 

     ∑
−

=
−++=

1

1
1 1

id

j
j dYcntcnt       

 
Figure 5.4 The Low-Weight subtract algorithm. 

5.3 The Proposed Encoding Scheme 

For a transmitting m-bit data we require at least m bus lines. We increase number of bus 

lines to n > m lines, such that m/n is greater than or equal to the desired transmission rate.  

The encoding idea is to find a function that maps an m-bit data sequence to a low 

Hamming weight n-bit codeword. 
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Let L1 be the list of all binary sequences in {0, 1}m, in normal ascending order. For 

example, using an indexing system starting at zero, the index for the all zeros sequence is 

zero and the index for the all ones sequence is 2m-1. Also, list L2 is the list of all n-ary 

sequences in Pk, 1≤ k≤ n, in Low-Weight order. We expand (using f -1
phrase) and map the 

ith element of L2 as the codeword for the ith element of L1, for 0≤ i≤ 2m-1. Table 5.2 

shows the 5-bit codewords assigned to 4-bit data sequences. Note that the codewords are 

5-bit binary sequences with low (0, 1 and 2) Hamming weights. This encoding scheme 

can be completed on the fly, using enumeration. 

5.4 Enumeration Scheme   

The question is how to map a given m-bit sequence to an n-bit codeword on the fly 

without storing the (data, codeword) pairs in a table. Recall that the table size grows 

exponentially with data length and eliminating the table is so useful in terms of memory 

complexity.  

Let L be a list whose kth element is the number of n-bit binary sequences with exactly k 

ones (Hamming weight wH = k). We denote the kth element of L by 







k
n

, and form another 

list Lcumulative by cumulative summation of list L. Thus, the kth element of list Lcumulative is 

∑
=








k

i k
n

0

 and shows the number of codewords with wH ≤ k. This list grows linearly with wH 

and does not need a large memory space. Furthermore, based on Equation 5.2, we may 

keep only half of the list and compute the rest on the fly and save more space.  









=








21 k

n
k
n

 , nkk =+ 21                                                                                              (5.2) 



 46

 

 
Index 

L1 
Binary Data 

L2  
Codeword Phrase 
Representation 

 
Codeword 

0  0000 0 00000 
1  0001 1 10000 
2  0010 2 01000 
3  0011 3 00100 
4  0100 4 00010 
5  0101 5 00001 
6  0110 11 11000 
7  0111 21 01100 
8  1000 31 00110 
9  1001 41 00011 
10  1010 12 10100 
11  1011 22 01010 
12  1100 32 00101 
13  1101 13 10010 
14  1110 23 01001 
15  1111 14 10001 

Table 5.2 Mapping 4-bit data sequences to 5-bit codewords. 

The proposed encoding scheme allows replacing the table of (data, codeword) pairs 

with Lcumulative list and enables enumerative coding. The enumeration scheme includes the 

following steps for mapping data D to codeword C. 

1. Use Lcumulative list to find the Hamming weight of codeword C by Equation 5.3. 
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2. Use Lcumulative list to find the number of codewords (N) with Hamming weights 

smaller than the Hamming weight of codeword C denoted by wH (C).  

N = Lcumulative (wH (C) - 1)                                                                 (5.4) 

3. Form the first codeword C0 with Hamming weight wH in Low-Weight ordering.  
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 C0 = A string of wH ones followed by n-wH zeros with the general form: (1, 1 … 1, 0, 

0 … 0)  

4. Find the codeword that appears cnt = D - N codewords after C0 in Low-Weight 

order.  

For example, consider finding the 5-bit codeword corresponding to the 4-bit data D = 

1010 which is 10 in decimal.   

L = {1,     5,    10,    10,     5,     1}  

Lcumulative = {1,    6,    16,    26,    31,    32} 

In this example, 6 ≤ D = 10 < 16, wH (D) = 1 and N = Lcumulative (0) = 1, C0 = 10000, and 

D - N = 9. Thus, to find the corresponding codeword for D = 1010 we should find the 

codeword C that appears N = 9 codewords after C0 = 10000 in Low-Weight ordering. 

Thus, C = 10100, as Table 5.2 shows.  

Similarly, at the decoder side, we can use enumeration to find the data D for a received 

codeword C, on the fly. The difference is that we have to use C and compute its Low-

Weight rank which is the corresponding data. Recall that at the encoder we used the data 

rank to compute C. The following steps complete the enumeration for at the decoder: 

1. Count the number of ones of codeword C to find its Hamming weight wH (C).                                

2. Use Lcumulative list to find the number of codewords (N0) with Hamming weights 

smaller than wH (C).  

N0 = Lcumulative (wH (C) - 1)                                                                 (5.5) 

3. Form C0 as before, at the encoder.   

4. Codeword C appears cnt codewords after C0. Use the Low-Weight Subtract to 

find cnt.  
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5. Compute D = cnt + N0.  

5.5 Using help Codewords 

We showed that the codewords of lower Hamming weights have less mean 

transmission cost per bit, compared to larger weight ones. On the other hand, for some 

initial bus states, a high weight transition codeword may result in smaller cost. For 

example, if the initial bus state S0 = 101010000 then the transition codeword c1 = 

111100000 is more costly than c2 = 000011111, while it has a lower Hamming weight.  

Therefore, after selecting the low weight codewords, we assign a help codeword from 

the unselected higher weight codes to each selected low weight codeword. Before 

transmission on the bus, we compute the transmission cost for both the codeword and the 

help codeword. The codeword which results in smaller cost is placed and transmitted on 

the bus. This approach helps to gain more cost reduction, compared to the original 

differential low-weight coding scheme.  

We add another step to this to reduce the cost more. Consider the phrase representation 

p = p1p2…pk of the extra codeword assigned to a given low weight codeword. Phrase 

rotation of p to the right to obtain p = pk p1p2… pk-1 is helpful to reduce the cost, as well. 

For example, consider codeword c = 010100101 the complement is c′ = 101011010 and p 

=12212, which cannot help reduce the transmission cost of c for any initial bus states. 

Phrase rotation of p however, results in p =21221, or equivalently 011010110, which has 

a smaller transmission cost for initial bus states like xccxxxcc, where there are no 

restrictions on each x and any run of consecutive bits depicted by c must be all 1 or all 0.  
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5.6 Simulation Results 

We employed the proposed encoding method to transmit data on 16-bit, 32-bit and 64-

bit buses at the maximum possible rate, where only one extra line bus is added. Tables 

5.3-5.5 compare the uncoded and the differential low-weight methods with the proposed 

method. As the tables show, in all cases the proposed method results in better cost (power 

and delay) reductions. We can achieve more power reduction by adding more bus lines. 

The tables show that the proposed method results in power reduction, for the most limited 

case (worst case), where only one extra bus line is allowed. Moreover, the proposed 

method requires O(wH) tables, where wH is the maximum Hamming weight of the 

selected codewords. Recall that the low-weight encoding scheme requires O(2n) tables for 

n-bit buses. Thus, there is a considerable reduction in size of tables and the system 

memory requirements. 

 

Method k n E/codeword E/bit E Normalized  

Uncoded 16 16 88 5.5 1 

Dif. low-weight 16 17 75.1181 4.6949 0.8536 

Proposed 16 17 71.6958 4.4810 0.8147 

 
Table 5.3 Comparison of different transmission methods for 16-bit bus. 

 

According to Table 5.3, the proposed encoding achieves 18.5% compared to uncoded 

and 1-71.6958/75.1181=4.6% improvement compared to the differential low-weight 

encoding. This table shows the simulation results for 1e6 randomly chosen input samples. 
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Method k n E/codeword E/bit E Normalized  

Uncoded 32 32 176 5.5 1 

Dif. low-weight 32 33 156.1017 4.8782 0.8869 

Proposed 32 33 150.6102 4.7066 0.8557 

 
Table 5.4 Comparison of different transmission methods for 32-bit bus. 

 

Table 5.4 shows that the proposed encoding achieves 14.5% compared to uncoded and 

(1-150.6102/156.1017)100 = 3.5% improvement compared to the differential low-weight 

method. This table shows the simulation results for 118e6 randomly chosen input 

samples. 

 

Method k n E/codeword E/bit E Normalized  

Uncoded 64 64 352 5.5 1 

Dif. Low-weight 64 65 3.2195e2 5.0305 0.9146 

Proposed 64 65 3.1373e2 4.9021 0.8913 

 
    
Table 5.5 Comparison of different transmission methods for 64-bit bus. 

 

Table 5.5 shows that the proposed encoding reduces the transmission cost 10.87% 

totally and (1-3.2195e2/3.1373e2)100 = 2.6% more than the differential low-weight 
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method for a 64-bit DSM bus. This table shows the simulation results for 1e6 randomly 

chosen input samples. 

We also compared two methods for finding the helping codewords: complement and 

phrase rotate and complement only. Table 5.6 shows the results for an 8-bit bus. As the 

table indicates the ‘complement and phrase rotate’ method results in better power 

reduction compared to ‘complement only’. 

 

Extra Codeword 

Selection Method 

Rate E/ codeword E/bit Improvement vs. Dif. 

Low-weight 

(Comp. & Phrase 

Rotate) 

8/9 34.0922 4.2615/4.4969 5.2% 

Complement 8/9 34.2915 4.2864/4.4969 4.6% 

 
Table 5.6 Mapping 4-bit data sequences to 5-bit codewords. 

 
Note that our simulations are for the highest possible rate were only one extra line is 

added. We can achieve more reduction by adding more lines. However, we cannot add 

too many lines as it decreases the rate (the number of useful transmitted bits per bus use). 

For optimal number of bus lines refer to Section 3.6.  

 
 
 
 
 
 
 
 
 



 52

 
 
 
 
 
 
 

 
 

Chapter 6 
 

Conclusions 
 
 

 
In the deep submicron technology (DSM), the coupling between lines (inter-wire 

capacitance) is much stronger than the coupling between individual lines and ground and 

the energy caused by parasitic capacitance is non-negligible [1-6]. Equations of the DSM 

buses indicate that the energy and delay depend on the sequence of data transmitted on 

the bus. Encoding is an efficient way for controlling the transmitted sequence on the bus 

and many encoding schemes have been used to reduce energy and delay on DSM buses, 

in the literature [7-15]. Note that to be effective, the encoder and decoder systems should 

have small energy and delay values. 

The differential low-weight coding [1] is a simple differential scheme that achieves 

most of the possible energy reduction, from an information theory point of view.  This 

efficient scheme employs differential coding and selects transition codewords of smaller 

Hamming weights for transmission on the bus. Thus, it is based on reducing the transition 

activity on the bus. However, this coding scheme requires tables of size O(2n) for an n-

line bus, which is a significant overhead, especially when the number of bus lines is 
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large. Also, it does not take into account some characteristics of the DSM buses that can 

be exploited to reduce the transmission cost further.  

We proposed an enumeration method that reduces the required table-size of the 

differential low-weight encoder from O(2n) words to O(n) words, for an n-line bus and 

achieves considerable gain in terms of memory complexity. Furthermore, it facilitates 

less power dissipation and delay, as it eliminates the need for addressing and fetching 

data from very large tables in memory.  

We also defined a cost function which could control both the energy and delay on DSM 

buses. We modified the energy and delay equations of DSM buses and developed a new 

representation in terms of number of the same and opposite direction transitions on the 

bus. We used these equations in our interconnect analysis to reduce the transmission cost 

further and to develop closed form formulas for computing the mean transmission cost 

per bit on DSM buses for both differential low-weight encoding and uncoded schemes. 

We employed simple operations like complement and rotate, to compute help 

codewords (from the set of unselected codewords) on the fly, and assign them to the 

selected codewords. Note that the help codewords enable us to achieve more cost 

reduction, without increasing the memory complexity or number of the bus lines.  

The simulation results for 16-bit, 32-bit and 64-bit buses at maximum rate (only one 

extra line added) show that the proposed encoding scheme achieves more than 10% cost 

reduction, and performs more than 2.5% better than to the original differential low-

weight scheme, in the worst case. 
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Appendix  
 

List 1 List of the codewords with Hamming weight equal to 4 for n = 9, in Low-weight 
order. 
 

X                    p                      c 
0       1111            111100000 
1 2111            011110000 
2 3111            001111000 
3 4111            000111100 
4 5111            000011110 
5 6111            000001111 
6 1211            101110000 
7 2211            010111000 
8 3211            001011100 
9 4211            000101110 
10 5211            000010111 
11 1311            100111000 
12 2311            010011100 
13 3311            001001110 
14 4311            000100111 
15 1411            100011100 
16 2411            010001110 
17 3411            001000111 
18 1511            100001110 
19 2511            010000111 
20 1611            100000111 
21 1121            110110000 
22 2121            011011000 
23 3121            001101100 
24 4121            000110110 
25 5121            000011011 
26 1221            101011000 
27 2221            010101100 
28 3221            001010110 
29 4221            000101011 
30 1321            100101100 
31 2321            010010110 
32 3321            001001011 
33 1421            100010110 
34 2421            010001011 
35 1521            100001011 
36 1131            110011000 
37 2131            011001100 
38 3131            001100110 
39 4131            000110011 
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40 1231            101001100 
41 2231            010100110 
42 3231            001010011 
43 1331            100100110 
44 2331            010010011 
45 1431            100010011 
46 1141            110001100 
47 2141            011000110 
48 3141            001100011 
49 1241            101000110 
50 2241            010100011 
51 1341            100100011 
52 1151            110000110 
53 2151            011000011 
54 1251            101000011 
55 1161            110000011 
56 1112            111010000 
57 2112            011101000 
58 3112            001110100 
59 4112            000111010 
60 5112            000011101 
61 1212            101101000 
62 2212            010110100 
63 3212            001011010 
64 4212            000101101 
65 1312            100110100 
66 2312            010011010 
67 3312            001001101 
68 1412            100011010 
69 2412            010001101 
70 1512            100001101 
71 1122            110101000 
72 2122            011010100 
73 3122            001101010 
74 4122            000110101 
75 1222            101010100 
76 2222            010101010 
77 3222            001010101 
78 1322            100101010 
79 2322            010010101 
80 1422            100010101 
81 1132            110010100 
82 2132            011001010 
83 3132            001100101 
84 1232            101001010 
85 2232            010100101 
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86 1332            100100101 
87 1142            110001010 
88 2142            011000101 
89 1242            101000101 
90 1152            110000101 
91 1113            111001000 
92 2113            011100100 
93 3113            001110010 
94 4113            000111001 
95 1213            101100100 
96 2213            010110010 
97 3213            001011001 
98 1313            100110010 
99 2313            010011001 
100 1413            100011001 
101 1123            110100100 
102 2123            011010010 
103 3123            001101001 
104 1223            101010010 
105 2223            010101001 
106 1323            100101001 
107 1133            110010010 
108 2133            011001001 
109 1233            101001001 
110 1143            110001001 
111 1114            111000100 
112 2114            011100010 
113 3114            001110001 
114 1214            101100010 
115 2214            010110001 
116 1314            100110001 
117 1124            110100010 
118 2124            011010001 
119 1224            101010001 
120 1134            110010001 
121 1115            111000010 
122 2115            011100001 
123 1215            101100001 
124 1125            110100001 
125 1116            111000001 
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