
Georgia State University
Digital Archive @ GSU

Computer Science Theses Department of Computer Science

5-12-2005

Delay and Power Reduction in Deep Submicron
Buses
Sharareh Babvey
sbabvey1@student.gsu.edu

Follow this and additional works at: http://digitalarchive.gsu.edu/cs_theses

This Thesis is brought to you for free and open access by the Department of Computer Science at Digital Archive @ GSU. It has been accepted for
inclusion in Computer Science Theses by an authorized administrator of Digital Archive @ GSU. For more information, please contact
digitalarchive@gsu.edu.

Recommended Citation
Babvey, Sharareh, "Delay and Power Reduction in Deep Submicron Buses" (2005). Computer Science Theses. Paper 5.

http://digitalarchive.gsu.edu?utm_source=digitalarchive.gsu.edu%2Fcs_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalarchive.gsu.edu/cs_theses?utm_source=digitalarchive.gsu.edu%2Fcs_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalarchive.gsu.edu/computer_science?utm_source=digitalarchive.gsu.edu%2Fcs_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalarchive.gsu.edu/cs_theses?utm_source=digitalarchive.gsu.edu%2Fcs_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalarchive.gsu.edu/cs_theses/5?utm_source=digitalarchive.gsu.edu%2Fcs_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalarchive@gsu.edu

COPYRIGHT BY

Sharareh Babvey

2005

Delay and Power Reduction in Deep Submicron Buses

By:

Sharareh Babvey

Major Professor: A. P. Preethy
Committee: Saeid Belkasim
 Alex Zelikovsky

Electronic Version Approved

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
May 2005

Delay and Power Reduction in Deep Submicron Buses

By:

Sharareh Babvey

Under the Dirction of:

A. P. Preethy

ABSTRACT

As technology scales down, coupling between nodes of the circuits increases and

becomes an important factor in interconnection analysis. In many cases like the deep

submicron technology (DSM), the coupling between lines (inter-wire capacitance) is

strong and the power consumed by parasitic capacitance is non-negligible [1-6].

In this work, we employ the differential low-weight encoding [1] to reduce energy and

delay (transmission cost) on DSM buses. We propose an enumeration method that

reduces the encoder table-size from O(2n) words to O(n) words, for an n-bit DSM bus,

and so reduces the memory complexity significantly and facilitates energy and delay

reduction due to addressing and fetching data from large lookup tables. We modify the

energy and delay equations for DSM buses and develop new representations in terms of

number of the same and opposite direction transitions on the bus and use them in our

interconnect analysis. We also use these equations to develop formulas for computing the

mean transmission cost per bit on DSM buses for both differential low-weight encoding

and uncoded schemes. Using the interconnect analysis, we compute a help codeword

(from the set of unselected codewords) on the fly and assign to each selected codeword.

This low complexity step consists of simple operations and enables us to gain more cost

reduction without increasing the table size or number of the bus lines. The simulation

results for 16-bit, 32-bit and 64-bit buses at maximum rate (only one extra line added)

show that the proposed encoding scheme achieves more than 10% cost reduction, and

performs more than 2.5% better than to the original differential low-weight scheme, in

the worst case.

INDEX WORDS: Deep Sub-Micron bus, Power reduction, Delay reduction

 iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. A. P. Preethy for giving me the privilege to work

under her supervision. I will always remember her kindness, help and support. I would

like to thank Dr. Steven W. McLaughlin for all his contributions to this work and his

valuable guidelines and comments. I would also like to thank the committee members Dr.

Saeid Belkasim and Dr. Alex Zelikovsky for reviewing my thesis and their valuable

comments.

I especially want to thank Dr. Sunderraman for all his help, advice and support during

my graduate studies at GSU and for all his hard work and devotion to the Computer

Science Department.

 v

 TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

LIST OF FIGURES.. vii

LIST OF TABLES... viii

1 INTRODUCTION .. 1

2 TERMS AND DEFINITIONS .. 4

2.1 TRANSMISSION RATE.. 4

2.2 N-ARY VS. BINARY .. 4

2.3 HAMMING WEIGHT .. 4

2.4 PHRASE REPRESENTATION... 5

2.5 LEXICOGRAPHIC ORDERING.. 5

3 RELATED WORKS.. 6

3.1 DEEP SUBMICRON BUSES ... 6

3.2 ENERGY CONSUMPTION IN DEEP SUBMICRON BUSES ... 8

3.3 DELAY IN DEEP SUBMICRON BUSES... 10

3.4 LOW TRANSITION-ACTIVITY ENCODING FOR DEEP DSM BUSES 11

3.5 DIFFERENTIAL LOW-WEIGHT ENCODING APPROACH 13

3.5.1 ENCODING SCHEME... 13

3.5.2 DECODING SCHEME... 14

3.6 ENERGY REDUCTION BY DIFFERENTIAL LOW WEIGHT ENCODING 15

4 ENERGY AND DELAY ANALYSIS FOR DSM BUSES 16

 vi

4.1 COST FUNCTION FOR ENERGY AND DELAY IN DSM BUSES 16

4.2 TRANSMISSION COST ANALYSIS ... 20

4.2.1 COST COMPARISON FOR TRANSITION CODEWORDS CDISCONT AND CCONT ... 21

4.2.2 MEAN TRANSITION COST FOR CODEWORDS .. 27

4.3 TRANSMISSION COST FOR DIFFERENTIAL LOW-WEIGHT ENCODING 32

4.4 TRANSMISSION COST FOR THE UNCODED SCHEME .. 33

5 THE PROPOSED ENCODING SCHEME... 34

5.1 LOW-WEIGHT ORDER.. 35

5.2 OPERATIONS FOR THE LOW-WEIGHT ORDERED NUMBERS 37

5.2.1 LOW-WEIGHT COUNT... 37

5.2.2 LOW-WEIGHT DIVISION.. 39

5.2.3 LOW-WEIGHT ADDITION ... 39

5.2.4 LOW-WEIGHT SUBTRACT .. 44

5.3 THE PROPOSED ENCODING SCHEME ... 44

5.4 THE PROPOSED ENUMERATION SCHEME .. 45

5.5 USING HELP CODEWORDS... 48

5.6 SIMULATION RESULTS.. 49

6 CONCLUSIONS .. 52

BIBLIOGRAPHY... 54

APPENDIX ... 56

 vii

LIST OF FIGURES

Figure 3.1 Older silicon technology….………………………………………………….7

Figure 3.2 Deep Sub-Micron technology………..………………………………………7

Figure 3.3 Approximate DSM bus model……………………………………………….9

Figure 3.4 DSM bus model for a bus with two parallel lines…………………………...10

Figure 3.5 a) Transmit uncoded data, b) Transmit coded data, c) Signaling....................13

Figure 3.6 The differential low-weight encoding and decoding ………………………..14

Figure 3.7 Energy reduction by low-weight encoding and decoding…………………...15

Figure 5.1 The Low-Weight count algorithm…………………………………………...38

Figure 5.2 The Low-Weight division algorithm………………………………………...39

Figure 5.3 The Low-Weight addition algorithm………………………………………...43

Figure 5.4 The Low-Weight subtract algorithm………………………………………...44

 viii

LIST OF TABLES

Table 4.1 Transition cost for Ccont and different initial bus states……………………….22

Table 5.1 Low-Weight ordering for entries of set Pk, 1≤ k≤ 5…………………………..37

Table 5.2 Mapping 4-bit data sequences to 5-bit codewords……………………………46

Table 5.3 Comparison of different transmission methods for 16-bit bus………………..49

Table 5.4 Comparison of different transmission methods for 32-bit bus………………..50

Table 5.5 Comparison of different transmission methods for 64-bit bus………………..50

Table 5.6 Mapping 4-bit data sequences to 5-bit codewords……………………………51

 1

Chapter 1

Introduction

Current trend of technology requires scaling down the size of devices and increasing

the clock frequencies. Such scaling leads to exponential increase in leakage current and

decrease in noise immunity for high speed circuits. Shrinking feature sizes results in

more interconnect levels packed closer together. Reducing the wire areas decreases the

total wire capacitance. However, as technology scales down, not many lines are isolated

or shielded anymore. Inductive effects and coupling between nodes of the circuit increase

and become an important factor in interconnection analysis. As frequency of operation

increases, additional metal patterns or ground planes may be required for inductive

shielding. As supply voltage is scaled or reduced, crosstalk has become an issue for all

clock and signal wiring levels.

In many cases, like the deep submicron technology (DSM), the power dissipation, delay

and crosstalk depend on the cross-activities between the nodes, as well. For DSM buses,

the coupling between lines (inter-wire capacitance) is much stronger than the coupling

between individual lines and ground and the energy consumption caused by parasitic

 2

capacitance is non-negligible. Thus, both the intrinsic capacitance and parasitic

capacitance should be taken into account [1, 18].

The near term solution adopted by the industry is the use of thinner metallization,

reduced aspect ratios and less aggressive scaling of dielectric constant to decrease the

capacitance. There are some limitations for fulfilling this goal, as some required

characteristics of certain technologies (like area, current per area, etc.) may be violated.

A wise solution is to employ encoding to reduce the effect of the capacitance both for

the existing technologies, and future technologies with smaller capacitance. Encoding

controls the transition activity, and so the cross-coupling effect and switching activities

on the DSM bus by controlling the data sequences transmitted on the bus [1, 7-15].

In [1, 7], P. Sotiriadis, A. Chandrakasan and V. Tarokh discussed two fundamental

questions. What is the minimum energy required per information bit for communicating

through DSM buses? And, is the minimum energy achievable using coding? They

introduced equations for the minimum energy requirements and showed that the

minimum energy is asymptotically achievable using coding. They also proposed a simple

differential coding scheme (the differential low-weight coding) that achieved most of the

possible energy reduction. This efficient scheme employs differential coding and selects

transition codewords of smaller Hamming weights for transmission on the bus. Thus, it is

based on reducing the transition activity on the bus. However, this coding scheme

requires tables of size O(2n) for an n-bit bus. Also, it does not take into account some

characteristics of the DSM buses that can be exploited to reduce the transmission cost

further. For example, on a DSM bus if two adjacent lines change both from 0 to 1 or vice

versa (same direction transitions), less energy is consumed compared to two transitions

 3

on two nonconsecutive lines. Conversely, if two adjacent lines change in opposite

directions then more energy is consumed, compared to two transitions on two

nonconsecutive lines. The same direction and opposite direction bus transitions can be

exploited to achieve more energy and delay reduction on the DSM bus.

In this work, we propose an enumeration method that reduces the required table-size of

the differential low-weight encoder from O(2n) words to O(n) words, for an n-bit bus.

Thus, the enumeration reduces the memory complexity significantly, especially when n is

large. Furthermore, it facilitates less power dissipation and delay, as it eliminates the need

for addressing and fetching data from very large tables in memory.

We modify the energy and delay equations for DSM buses further and develop a new

representation in terms of number of the same and opposite direction transitions on the

bus. These equations are very helpful for cost analysis in the DSM buses. We also

develop equations for computing the mean transmission cost per bit on DSM buses for

both differential low-weight encoding and uncoded schemes. We use simple operations

like complement and rotate, to compute help codewords (from the set of unselected

codewords) on the fly, and assign them to the selected codewords. Note that the help

codewords enable us to achieve more cost reduction, without increasing the memory

complexity or number of the bus lines. The simulation results show that the proposed

encoding scheme achieves more cost (power and energy) reduction, compared to the

original differential low-weight scheme.

 4

Chapter 2

Terms and Definitions

In this chapter, we present some definitions and terms that are used throughout this work.

2.1 Transmission Rate

The transmission rate R is computed as R = m/n, when m-bit data sequences D ∈{0,

1}m are transmitted on a bus with n> m lines. Set {0, 1}m includes all binary sequences of

length m and so has 2m different elements.

In fact, transmission rate is a measure of how many useful bits are transmitted on the bus

during each use of bus.

2.2 N-ary vs. Binary

A binary sequence of length n is composed of elements in the set {0, 1}n. For example,

011101 is a binary sequence of length 6. Similarly, an N-ary sequence of length n is

composed of elements in the set {0, 1, 2 … N-1}n.

2.3 Hamming Weight

Hamming weight of a given binary sequence is the number of ones in that sequence.

For example D = 10011100 has hamming weight equal to 4 and we show it by WH (D) =

4.

 5

2.4 Phrase Representation

We may break each data sequence of length l to phrases, where each phrase consists of

d ≥ 0 zeros and terminates with single nonzero symbol (1 for binary sequences). The

phrase representation [16] uses the length of each phrase to represent the data sequence.

Using this representation, each l–bit binary data sequence D is mapped to a unique phrase

representation p from the alphabet {1, 2…n}, whose length l is equal to the Hamming

weight of D [16]. We denote the mapping function by fphrase and we have fphrase (D) = p.

For example, the phrases representing the 8-bit data D = 10011100 are: 1 001 1 1. The

phrase representation for D is the sequence1311 of length 4. Thus, fphrase (10011100) =

1311.

For a given l the function fphrase (D) is one to one and has an inverse. The inverse

function expands a phrase representation to a unique binary sequence of length l. For

example, for l =8, f -1phrase (1321) = 10010110.

2.5 Lexicographic Ordering

Let {1, 2, 3… n}k denote all the n-ary permutations of k symbols chosen from the set

{1, 2, 3, … n} and let S be a subset of this set. By a lexicographic ordering for S we mean

the usual dictionary ordering with the assumption that 1< 2< 3 <… < n-1 [16].

Specifically, for x= (x1, x2 … xk)∈S and y= (y1, y2 … yk)∈S we have x < y if there exists

1≤ i≤ k such that xi < yi and xj = yj for all 1≤ j < i .

Let nS (x1, x2 … xu) denote the number of elements in S for which the first u coordinates

are (x1, x2 … xu). Then, the lexicographic index or rank of x is given by [17]:

∑∑
=

−

=
−=

k

j

x

t
jSS

j

txxxnxi
1

1

0
121),,...,,()(

 6

Chapter 3

Related Works

In this chapter, we introduce the Deep Submicron Buses (DSM) and the important

factors of energy consumption and delay on these buses. We also explain how to measure

energy and delay in DSM buses. We present the concept of low transition-activity

encoding [1, 7-15] for reducing power consumption and delay on DSM buses. Finally, we

explain in detail, the differential low-weight encoding [1] that is a simple and efficient

low transition-activity scheme upon which we base our proposed encoder.

3.1 Deep Submicron Buses

Current trend of technology requires scaling down the size of devices and increase

clock frequencies. Such scaling leads to exponential increase in leakage current and

decrease in noise immunity for high speed circuits. Shrinking feature sizes results in

more interconnect levels packed closer together. Reducing the wire areas decreases the

total wire capacitance. However, as technology scales down, not many lines are isolated

 7

or shielded anymore. Coupling between nodes of the circuit increases and becomes an

important factor in interconnection analysis. Figures 3.1 and 3.2 compare the old silicon

technology and the deep submicron technology (DSM) [1, 18, and 20].

Figure 3.1 The older silicon technology [18].

Figure 3.2 The Deep Sub-Micron technology [18].

 8

3.2 Energy Consumption in Deep Submicron Buses

Consider a bus line carrying a binary sequence x(t), x(t +1), x(t +2) … . The energy

consumption at time k for charging and discharging the parasitic capacitance between the

line and ground depends only on the two values x(k-1) = u0 and x(k) = uN. In other words,

the transition cost depends on the initial and final values of the bus. Equation 3.1

generalizes this property to n bus lines. In this equation,]...[00
2

0
1

0
nuuuu = is the initial

state of the bus, and]...[21
N
n

NNN uuuu = is the final state.

∑
=

⊕=
n

i

N
iia uuT

1

0 (3.1)

The transition activity Ta of a circuit node (or line) is a useful power measure when the

node (line) is decoupled from other active nodes in the circuit [1]. For such nodes the

power consumption can be simply computed by E = Ta CL V2
dd /2. Equation 3.2

computes the energy consumption for a bus with n lines. In this equation CL is the

capacitance between the node and ground.

2/2/)(2

1

02
ddL

n

i

N
iiddLa VCuuVCTzwE 







⊕==→ ∑

=

 (3.2)

Coupling between nodes implies that power dissipation depends also on their cross-

activities and therefore, Equation 3.2 is not valid anymore. In many cases like the deep

Submicron Buses, coupling between lines is even stronger than the coupling between a

line and the ground.

 9

Figure 3.3 shows an approximate model for a DSM technology bus [1-3]. This model

considers the boundary capacitors due to fringing effects, capacitors due to coupling

between a line and the ground, and coupling between two adjacent lines.

Figure 3.3 A DSM bus model [3].

The energy consumption during transition from the initial bus state u0 to the final bus

state uN is given by [3, 6]:

2/)()()(2000
dd

TNTNN VuuCuuuuE −⋅⋅−=→ (3.3)

Equation 3.4 shows the matrix C, where
L

I

c
c

=λ . cI is the inter-wire capacitance per

unit length between adjacent lines and cL is the parasitic capacitance per unit length

between each line and ground. The constant λ is a real non-negative parameter that

depends on physical parameters of lines, such as geometry, size, distance between the

lines and the manufacturing technology. For modern deep sub-micrometer technologies,

λ can be as high as 8 (for example in 0.13- m technologies).

LcC .

2100...0
210...0

::::::
0...210
0...021
0...0021



























+−
−+−

−+−
−+−

−+

=

λλ
λλλ

λλλ
λλλ

λλ

 (3.4)

 10

For the obsolete non-submicron (NSM) technologies λ is practically zero and C reduces

to a scalar matrix. Thus, in the case of DSM technologies (λ > 0), unlike the case of NSM

(λ = 0), the cost function has terms corresponding to interactions between the values

transmitted on different lines. Figure 3.4 shows more details of the approximate model of

a DSM bus with two parallel lines [4]. There is a driver for each line (Each line is

connected to Vdd). A driver can be modeled by a voltage source with a series resistance rd.

Figure 3.4 DSM bus model for a bus with two parallel lines [4].

3.3 Delay in Deep Submicron Buses

A significant noise source in current processes is the coupling between lines. This

coupling is even stronger than the coupling between a line and the ground. Consider a bus

with n lines, each of length L. Let]...[00
2

0
1

0
nuuuu = be the initial condition of the bus,

where () }1,0{,0, 00 ∈= kkk uLVu is the voltage at the start of the line k of the bus. Also,

 11

]...[21
N
n

NNN uuuu = is the final condition of the bus, where () }1,0{,, ∈∞= N
kk

N
k uLVu is

the voltage at the end of line k of the bus (Figure 3.4).

The delay of each line k is notified with Dk. The sum of the delays in the bus is

computed by Equation 3.5, as follows [4, 5]. In this equation, r is the resistance of line

per unit length. Also, rT is a constant depending on resistance of each line and the line

driver per unit length, and the line length.

() () () T
NTNn

k

N
k rLuuCuuuuD ⋅⋅−⋅⋅−=∑

=

00

1

0, (3.5)

rLrr dT ⋅+=
2

Equation 3.6 shows the matrix C. In this equation,
L

I
c
c

=λ , cI is the inter-wire

capacitance per unit length between adjacent lines and cL is the parasitic capacitance per

unit length between each line and ground.

LcC .

2100...0
210...0

::::::
0...210
0...021
0...0021



























+−
−+−

−+−
−+−

−+

=

λλ
λλλ

λλλ
λλλ

λλ

 (3.6)

3.4 Low Transition-Activity Encoding for Deep DSM Buses

Equations 3.3 and 3.5 show that for DSM buses, energy and delay depend on the

sequence of data transmitted on the bus. Thus, we may decrease energy and delay on the

bus by controlling the sequence of data transmitted on the bus.

 12

Encoding is an efficient way for controlling the data sequence that is transmitted on the

bus. Using encoding we may map the high cost codewords to some other codewords with

lower costs. One approach is to add redundancy in the form of extra bus lines. To be

effective, the encoder and decoder systems should have small energy consumption and

delay values [1, 7-15].

Definition 1: Code C is a mapping from elements in set Qm = {0, 1}m to the elements in

set Qn = {0, 1}n, where n > m. Each sequence d∈Qm is mapped to one and only one

element d′∈Qn that satisfies a property of interest. As a result, some elements of Qn are

not used at all.

Consider a bus with n lines and let Qn = {0, 1}n be the set of all binary vectors of length

n. In an uncoded scheme, any data sequence d∈Qn can be transmitted on the bus. Figure

3.5 depicts both uncoded and coded transmission on the bus [19].

Adding extra lines to the bus, while the data stream is unchanged increases the capacity

of the transmission channel (the bus). Consider an n-bit bus, which is supposed to

transmit data sequences d∈Qn. The bus has the potential to transmit 2n different

sequences, while there are only 2m < 2n different data sequences. Thus, some bus states

are not used. One may choose the uncoded bus states to be the expensive ones.

 13

Figure 3.5 a) Transmit uncoded data, b) Transmit coded data, c) Signaling. [19]

3.5 Differential Low-Weight Encoding Approach

3.5.1 Encoding Scheme

The Bus state at time t is the sequence which is on the bus at time t. The encoding

scheme [1] includes the following steps:

1. Extend the bus from m lines to n > m lines.

2. Choose 2m codewords out of all possible codewords of length n > m such that the

Hamming weight for the selected codewords are smaller than a given threshold w.

(choose codewords of low Hamming weights).

 14

3. Map each bus input data d of length m to a valid codeword c of length n, using

function F. (Function F uses a table to complete the mapping).

4. XOR st, the bus state at the current time t with the codeword corresponding to the

bus input data. So, put st+1 = c ⊕ st on the bus.

As the code words have small weight, there will be small number of transitions on the

bus, and so the transmission cost decreases. Figure 3.6 depicts the encoding and decoding

schemes in the differential low-weight encoding approach.

3.5.2 Decoding Scheme

Each received codeword (st+1) is decoded [1] to obtain the corresponding input data,

using the following steps:

1. Use delay to access the previous bus state st and compute codeword c = st+1 ⊕ st.

2. Use the function F to find the corresponding data input d for codeword c.

Figure 3.6 depicts the encoding and decoding schemes in the differential low-weight

encoding approach.

Figure 3.6 The differential low-weight encoding and decoding [1].

 15

3.6 Energy Reduction by Differential Low Weight Encoding

Figure 3.7 shows simulation results for the differential low weight scheme. In this

figure m/n is the code rate (number of useful bits transmitted per bus use). Eb(Y) is energy

per bit for the encoded scheme and Eb(X) is energy per bit for uncoded data. Note that

Eb(Y) = Eb(X) when no bus lines or too many bus lines are added. For example, for 4-bit

data the optimal energy reductions happens at rate m/n = 0.5, where 4 out of sixteen 4-bit

sequences are chosen as codewords.

Figure 3.7 Energy reduction by low-weight encoding and decoding [1].

 16

Chapter 4

Energy and Delay Analysis for DSM Buses

In this chapter, we analyze the transmission energy and delay equations and show that

the energy consumption and delay for a given DSM bus are different only by a scalar

term. We introduce a common cost function which can control both. Reducing the cost

function by encoding or any other approach results in both energy and delay reduction.

We modify the energy and delay equations for DSM buses and develop new

representations in terms of number of the same and opposite direction transitions on the

bus and use them in our interconnect analysis. Then, we drive closed form formulas for

computing the mean cost per bit over all possible initial bus states, for both differential

low-weight encoding [1] and uncoded approaches.

4.1 Cost Function for Energy and Delay in DSM Buses

Using the equations introduced in Chapter 3, the energy cost for transition T from the

initial bus state w = (w1, w2 … wn) to the final bus state z= (z1, z2 … zn) is computed by

Equation 4.1, where zi, wi ∈{0, 1}, T = z- w, the constant 2/2
ddVK = is a scalar

depending on the driver voltage and C is the capacity matrix.

 17

KCTfwzE ⋅=→),()(

TCTCTf T ⋅⋅=),((4.1)

C Lc.

2100...0
210...0

::::::
0...210
0...021
0...0021



























+−
−+−

−+−
−+−

−+

=

λλ
λλλ

λλλ
λλλ

λλ

Similarly, the delay is computed by Equation 4.2, where T = z- w and TrLk ⋅=' is a

scalar depending on the length and resistance per length for each bus line. Note that the

capacitance matrix C and the scalars K and K′ depend on physical characteristics of the

bus.

() '),(
1

KCTfwzD
n

k
k ⋅=→∑

=
 (4.2)

TCTCTf T ⋅⋅=),(

C Lc.

2100...0
210...0

::::::
0...210
0...021
0...0021



























+−
−+−

−+−
−+−

−+

=

λλ
λλλ

λλλ
λλλ

λλ

Equations 4.1 and 4.2 indicate that for a given DSM bus, the energy and delay are

different only by a scalar term and depend on the function f (T, C). This function is a

measure of the transmission energy and delay. We call it the cost function and we focus

on decreasing the transmission energy and delay cost on the DSM bus by decreasing this

 18

cost function. Cost function f (T, C) depends on the sequence of the data transmitted on

the bus. Thus, we may decrease f (T, C) and consequently, the transmission energy and

delay on the DSM buses by controlling the sequence of data transmitted on the bus.

For a DSM bus with n lines, the transition vector is denoted by T= (t1, t2 … tn), where ti

shows the transition activity for line i. Therefore, f (T, C) can be computed as follows:

TCTCTf T ⋅⋅=),(

[]























⋅



























+−
−+−

−+−
−+−

−+

⋅=

n

Ln

t

t
t
t

ctttt
:

.

2100...0
210...0

::::::
0...210
0...021
0...0021

... 3

2

1

321

λλ
λλλ

λλλ
λλλ

λλ

 (4.3)

Divide both sides of Equation 4.3 by constant cL results in Equation 4.4.

















































⋅++⋅−

⋅−+⋅++⋅−
⋅−+⋅++⋅−
⋅−+⋅++⋅−

⋅−+⋅+

=

−
n

T

nn

L

t

t
t
t

tt

ttt
ttt
ttt

tt

CCTf
:

.

)21(
:

)()21(
)()21(
)()21(

)()21(

/),(3

2

1

1

543

432

321

21

λλ

λλλ
λλλ
λλλ

λλ

 (4.4)

And, we complete the matrix multiplication and simplify further to get Equation 4.5.

 19

() ()
() ()
()2

1

45
2
44334

2
332

23
2
22112

2
1

)21()(

...)()21()()()21()(

)()21()()()21(/),(

nnn

L

ttt

tttttttttt

ttttttttCCTf

⋅++⋅⋅−+

+⋅⋅−+⋅++⋅⋅−+⋅⋅−+⋅++⋅⋅−+

⋅⋅−+⋅++⋅⋅−+⋅⋅−+⋅+=

− λλ

λλλλλλ

λλλλλ

() ()nnnL tttttttttttCCTf ⋅++⋅+⋅+⋅−++++⋅+= −1433221
22

2
2
1 ...)2(...)21(/),(λλ (4.5)

Knowing that T = (t1, t2 … tn) = z-w, each ti for 1≤ i≤ n could have the following values:









==−
==

=
=

)01(011
)10(101

)(0

tofromtransitionzandwif
tofromtransitionzandwif

transitionnozwif
t

ii

ii

ii

i (4.6)

Using Equations 4.5 and 4.6, we can see that the ‘no-transition case’ leaves

LCCTf /),(unchanged, and so imposes no extra energy or delay cost on the system.

However, each transition on a line adds as much as (1+2λ) to the cost function.

Moreover, each same direction transition on adjacent lines (both lines go from 0 to 1 or

vice versa) decreases the cost by 2λ, while an opposite direction transition on two

adjacent lines (one goes from 1 to 0 and the other from 0 to 1) increases the cost by 2λ. In

general, if codeword c results in T transitions on the DSM bus from which t+ transitions

are in the same direction and t- in the opposite direction, then the following formula gives

the total transition cost on DSM buses for codeword c.

−+ ×−×+×+= ttTCCTf L)2()2()21(/),(λλλ (4.7)

 20

Our goal is to employ encoding to map high cost data sequences with large cost

function values to codewords with lower costs. Thus, we are interested in codewords that

result in minimum number of transitions (less transition activity). Meanwhile, we like the

same direction transitions to happen on adjacent lines and the opposite direction

transitions on non-adjacent lines, as far as possible. On the other hand, we cannot be

very selective on the codewords, as it decreases the number of codewords selected for

transmission on a DSM bus of a given length and so decreases the transmission rate.

4.2 Transmission Cost Analysis

In this section, we compare the mean cost for different transition codewords of

Hamming weight wH to investigate how the location of ones in the codeword affects the

transmission cost.

Let 0 denote a run of x > 0 zeros. Ccont = 011…10 denotes a transition codeword with a

continuous run of 1s and Cdiscont = 01010…010 denotes a transition codeword for which

there is at least one zero between any two consecutive 1s. Recall that a transition vector

with adjacent 1s may lead to same direction or opposite direction adjacent transitions

based on the initial bus state. The question is how does the transition codewords Ccont and

Cdiscont compare, in terms of transmission cost. We start with computing the mean cost for

a given codeword of Hamming weight wH over different initial bus states.

For a transition codeword with Hamming weight wH, there are exactly wH nonzero

transitions. Suppose that the number of the same direction and the opposite direction

transitions are x+ and x-, respectively. Thus, using Equation 4.7, the cost function can be

computed as follows.

 21

)(2

)2()2()21(/),(
+−

+−

−++=

−+⋅+=

xxww

xxwCCTf

HH

HL

λ

λλλ
 (4.8)

In the following sections, we first give closed form equations for the mean cost per bit

of transition sequences like Ccont and Cdiscont, and then we generalize these equations for

codewords of any given form.

4.2.1 Cost Comparison for Transition Codewords Cdiscont and Ccont

 For Cdiscont, the transition cost is simply (1+ 2λ) ×wH independent of the initial bus state

So. For Ccont however, So is an important factor. Any zero is equivalent to no transition

and so no cost. For adjacent 1s, we should identify how many transitions are in the same

direction and how many are not. Note that for a codeword of weight wH, there may be at

most wH-1 pairs of consecutive transitions, some of which are in the same direction and

some in the opposite direction.

The number of all possible combinations of selecting i out of n objects is computed

by
)!(!

!
ini

n
i
n

−×
=








. Similarly, 







 −
×= −x

w
N H 1

21 gives the number of all possible

combinations of x- opposite direction transitions out of wH-1 pairs of consecutive

transitions. Multiplication by a factor of 2 is required, as the transitions could be from 0

to 1 or from 1 to 0. Table 4.1 summarizes different values of N1, as well as the cost per

transition codeword for different values of x- and x-.

For example, consider the transition sequence Ccont = 111. There are 







×=

0
2

22

possible initial bus states, namely S0 = 000 and S0 = 111 that result in x- = 0 and

 22

consequently x+ = 2. There are four possible values that result in x- = 1 and so x+ = 1,

which are S0 = 011, S0 = 100, S0 = 110, S0 = 001. Finally, S0 = 010 and S0 = 101 result in

x- = 2 and x+= 0.

x+

x-

 #of possible combinations
for x- opposite direction

transitions

Transition
 Cost per codeword

(computed by Equation 4.8)
wH-1 0








 −
0

1Hw ×2 wH+ 1×(2λ)

wH-2 1







 −
1

1Hw ×2 wH+ 3× (2λ)

wH-3 2







 −
2

1Hw ×2 wH+ 5× (2λ)

… … … …
0 wH-1









−
−

1
1

H

H
w
w ×2 wH+ (2(wH-1)+1)×(2λ)

Table 4.1 Transition cost for Ccont and different initial bus states.

Recall the following properties of the combination operation.

nn

i i
n

2
0

=







∑
=

 (4.9)

ni
in

n
i
n

≤







−

=







, (4.10)

For odd values of n, we have:









+








−

++







+

+







−

++







+







=








⇔+= ∑

= n
n

n
n

n
n

n
nnn

i
n

kn
n

i 1
...

2/)1(2/)1(
...

10
12

0
 (4.11)

 23

()









×++








−

×+−+

+









+

+
+

+







−

+
−

+

+







×+








×=








×+⇔+= ∑

=

n
n

n
n

n
n

n
nn

n
nn

nn
i
n

ikn
n

i

)12(
1

)1)1(2(

...
2/)1(

)1
2

12(
2/)1(

)1
2

12(

...
1

3
0

11212
0

 (4.12)

Combine Equations 4.9 - 4.11 to obtain the following equation.

nn

i n
nnn

i
n

kn 2
2/)1(

2...
1

2
0

212
0

=







−

++







+







=








⇔+= ∑

=
 (4.13)

Similarly, for even values of n, we have:









+







−

++







+

+







+








−

++







+







=








⇔= ∑

= n
n

n
n

n
n

n
n

n
nnn

i
n

kn
n

i 1
...

12/2/12/
...

10
2

0
 (4.14)

()









×++








−

×+−+

+









+

+++









++








−

+−+

+







×+








×=








×+⇔= ∑

=

n
n

n
n

n
n

n
n

n

n
n

n
n

n
n

nn
i
n

ikn
n

i

)12(
1

)1)1(2(

...
12/

)1)12/(2(

2/
)1)2/(2(

12/
)1)12/(2(

...
1

3
0

1122
0

 (4.15)

And finally, combine Equations 4.9, 4.10 and 4.14 to obtain the following equation.

nn

i n
n

n
nnn

i
n

kn 2
2/12/

2...
1

2
0

22
0

=







+








−

++







+







=








⇔= ∑

=
 (4.16)

 24

Using Table 4.1, the total cost over all possible initial bus states, denoted by COST is

computed as follows:

))2)(1)1(2((2
1
1

...))2(5(2
2

1

))2(3(2
1

1
))2(1(2

0
1

λ

λ

λλ

+−+××







−
−

+

++××






 −
+

+××






 −
++××







 −
=

HH
H

H

H
H

H
H

H
H

ww
w
w

w
w

w
w

w
w

COST

 (4.17)

Use the associative property of summation to regroup the terms in parenthesis of

Equation 4.17 and obtain two groups as factors of wH and 2λ.

() 














 −
×++







 −
= ∑∑

−

=

−

=

1

0

1

0

1
12)2(2

1
2

Hw

i

HHw

i

H
H i

w
i

i
w

wCOST λ (4.18)

Using Equation 4.9 we obtain:

()∑
−

=

−







 −
×++××=

1

0

1 1
12)2(222

Hw

i

HHw
H i

w
iwCOST λ (4.19)

 25

Now, we simplify the summation term in Equation 4.19 to simplify COST further.

 For odd values of wH -1, replace n with wH -1 in Equation 4.12.

()









−
−

×+−+









−
−

×+−−+

+







+−
−

+
+−

+









−−
−

+
−−

+

+






 −
×+







 −
×=







 −
×+∑

−

=

1
1

)1)1(2(

2
1

)1)11(2(

...
2/)11(

1
)1

2
1)1(2(

2/)11(
1

)1
2

1)1(2(

...
1

1
3

0
1

1
1

12
1

0

H

H
H

H

H
H

H

HH

H

HH

HHHw

i

H

w
w

w

w
w

w

w
ww

w
ww

ww
i

w
i

 (4.20)

And use Equation 4.10 to get:

)2)((

2/)2(
1

)(2

...
1

1
)(2

0
1

)(2

2/)11(
1

)1
2

1)1(21
2

1)1(2(

...
1

1
)1)11(23(

0
1

)1)1(21(
1

)12(

1

1

0

−

−

=

=









−
−

+

+






 −
+







 −
=









−−
−

+
+−

++
−−

+

+






 −
+−−++







 −
+−+=







 −
+∑

Hw
H

H

H
H

H
H

H
H

H

HHH

H
H

H
H

Hw

i

H

w

w
w

w

w
w

w
w

w
www

w
w

w
w

i
w

i

 26

So, we finally obtain:

)2)((
1

)12(2 1
1

0

−
−

=
=







 −
+⇔= ∑ Hw

H
Hw

i

H
H w

i
w

ikw (4.21)

Similarly, for even values of wH -1 we obtain Equation 4.22 as follows.

)2(

2/)1(
1

)1)2/1(2(
12/)1(

1
)(2

...
1

1
)(2

0
1

)(2

2/)1(
1

)1)2/1(2(

12/)1(
1

))1)1
2

1(21)1
2

1(2(

...
1

1
)1)1)1((23(

0
1

)1)1(21(
1

)12(

1

1

0

−

−

=

=









−
−

+−+







−−

−
+

+






 −
+







 −
=









−
−

+−+









−−

−
++

−
++−

−
+

+






 −
+−−++







 −
+−+=







 −
+∑

Hw
H

H

H
H

H

H
H

H
H

H
H

H

H
H

H

HHH

H
H

H
H

Hw

i

H

w

w
w

w
w

w
w

w
w

w
w

w
w

w

w
www

w
w

w
w

i
w

i

)2)((
1

)12(12 1
1

0

−
−

=
=







 −
+⇔+= ∑ Hw

H
Hw

i

H
H w

i
w

ikw (4.22)

Equations 4.21 and 4.22 indicate that:

)2)((
1

)12(1
1

0

−
−

=
=







 −
+∑ Hw

H
Hw

i

H w
i

w
i (4.23)

 27

Combining Equations 4.19 and 4.23, results in:

()

Hw
H

Hw
H

Hw
H

Hw

i

HHw
H

w

ww

i
w

iwCOST

2)21(

2)2(2

1
12)2(222

1

0

1

××+=

×+×=








 −
×++××= ∑

−

=

−

λ

λ

λ

 (4.24)

There are 2wH different initial bus states (S0). Therefore, the mean cost for Ccont over

different initial bus states, denoted by contCCost is computed as follows.

)21(
2/Cost
λ+=

=

H

Hw
contC

w
COST (4.25)

Equation 4.25 shows that the mean transition cost over all possible original bus states

(So) is simply wH (1+ 2λ), for both Cdiscont, and Ccont.

4.2.2 Mean Transition Cost for Codewords

We can generalize the above property to any codeword of hamming length wH, and of

the general from Cl = 1 0 1…, where 0 and 1 denote a run of x > 0 zeros and ones,

respectively. The integer l shows the number of runs of ones (number of 1s) in the

codeword.

Theorem 1: The mean cost per bit, over all possible initial bus states is the same for all

codewords of equal Hamming weight, and is computed by wH (1+ 2λ).

 28

Proof:

We use mathematical inference to prove that the cost per bit for Cgeneral is equal to wH

(1+ 2λ).

a. In Section 4.2.1 we showed that the mean transition cost over all possible original

bus states (So) for C1 = Ccont is wH (1+ 2λ). Thus, the initial inference condition is

satisfied.

b. We show that if the mean transition cost over all possible original bus states for

Ck is wH ×(1+ 2λ) then it is so, for Ck+1 = Ck 0 1, as well. The proof is as follows.

Table 4.1 indicates that the transmission cost may be one of the values c0 = wH +1(2λ),

c1 = wH+3(2λ)… cwH -1 = wH+ (2(wH-1) +1) (2λ) based on the number of the same and

opposite direction transitions. Suppose Ni is the number of initial bus states that result in

cost ci and the Hamming weight for Ck denoted by wH (Ck) is equal to x1. For transition

sequence Ck, we have:

))2)(1)1(2((
...))2(5())2(3())2(1(

1111

121110

λ
λλλ

+−+×+
++×++×++×=

− xxN
xNxNxNCOST

x
 (4.26)

According to the inference assumption,

1
1 2)21(xxCOST ×+= λ (4.27)

 29

And so, the right hand sides of Equations 4.26 and 4.27 are equal and we have the

following:

1
1

11111110

2)21(

))2)(1)1(2((...))2(3())2(1(
x

x

x

xxNxNxN

×+=

+−+×+++×++× −

λ

λλλ
 (4.28)

Suppose the length for the k+1th run of ones in Ck+1 is x2. Thus, the Hamming weight

for Ck+1 is x1 + x2 and from Equation 4.25 the following Equation holds:

21
11 2/Cost xx

kCkC COST +
++ = (4.29)

Using Equation 4.26 with wH = x2, for only the last run of ones in Ck+1, we have:

))2)(1)1(2((2
1
1

...))2(3(2
1

1
))2(1(2

0
1

2)21(

22
2

2

2
2

2
22

2

λ

λλλ

+−+××







−
−

+

++××






 −
++××







 −
=×+

xx
x
x

x
x

x
x

x x

 (4.30)

To compute the total cost for Ck+1 = Ck 0 1, we should consider Ck, as well as the last

run of ones. We compute the cost for each of these separately, and then add up the

individual costs to obtain the total cost. Equation 4.31 gives the total cost for Ck+1.

 30

()

()

()

()

()

()

()

()

())2)(1)1(2()2)(1)1(2(
1
1

2

...)2(3)2)(1)1(2(
1

1
2

)2(1)2)(1)1(2(
0

1
2

...)2)(1)1(2()2(3
1
1

2

...)2(3)2(3
1

1
2

)2(1)2(3
0

1
2

)2)(1)1(2()2(1
1
1

2

...)2(3)2(1
1

1
2

)2(1)2(1
0

1
2

2211
2

2
11

211
2

11

211
2

11

221
2

2
1

21
2

1

21
2

1

221
2

2
0

21
2

0

21
2

0

λλ

λλ

λλ

λλ

λλ

λλ

λλ

λλ

λλ

+−+++−+×







−
−

×+

++++−+×






 −
×+

+++−+×






 −
×+

++−+++×







−
−

×+

++++×






 −
×+

+++×






 −
×+

+−+++×







−
−

×+

++++×






 −
×+

+++×






 −
×=

−

−

−

xxxx
x
x

N

xxx
x

N

xxx
x

N

xxx
x
x

N

xx
x

N

xx
x

N

xxx
x
x

N

xx
x

N

xx
x

NCOST

x

x

x

C

 (4.31)

Using associative property of the summation, we place the first terms in the entire

parenthesis in one group, and the second terms in another one to obtain:

()

()

()

() () ()

() () ()

() () ()







+−+×








−
−

+++×






 −
++×







 −
×+

+







+−+×








−
−

+++×






 −
++×







 −
×+









+−+×








−
−

+++×






 −
++×







 −
×+

















−
−

++






 −
+






 −
×+−+××+

+















−
−

++






 −
+






 −
×+××+

















−
−

++






 −
+






 −
×+××=

−

−

+

)2)(1)1(2(
1
1

2...)2(3
1

1
2)2(1

0
1

2

...)2)(1)1(2(
1
1

2...)2(3
1

1
2)2(1

0
1

2

)2)(1)1(2(
1
1

2...)2(3
1

1
2)2(1

0
1

2

1
1

...
1

1
0

1
)2)(1)1(2(2

...
1
1

...
1

1
0

1
)2(32

1
1

...
1

1
0

1
)2(12

22
2

2
2

2
2

2
11

22
2

2
2

2
2

2
1

22
2

2
2

2
2

2
0

2

222
1111

2

222
11

2

222
101

λλλ

λλλ

λλλ

λ

λ

λ

xx
x
x

x
x

x
x

N

xx
x
x

x
x

x
x

N

xx
x
x

x
x

x
x

N

x
xxx

xxN

x
xxx

xN

x
xxx

xNCOST

x

x

kC

 31

Then, we simplify the terms inside the brackets using Equations 4.9 and 4.30 and factor

these terms out.

() () ()[]
() ()1110

2
2

11111110
12

1

 ... 2)21(

)2)(1)1(2(...)2(3)2(122

−

−
−

+

+++××++

+−+×+++×++×××=

x
x

x
x

kC

NNNx

xxNxNxNCOST

λ

λλλ

Note that 11
1110 2 ... −
− =+++ x

xNNN and we can simplify the terms inside the

brackets, using Equation 4.28.

() ()

))(21(2

)21(2)21(2

222)21(2)21(22

21
21

2
21

1
21

112
2

1
1

12
1

xx

xx

xxCOST

xx

xxxx

xxxx
kC

++=

+×++×=

×××++×+××=

+

++

−−
+

λ

λλ

λλ

 (4.32)

And finally from Equation 4.29,

)()21(
))(21(

2/Cost

1

21

21
11

+

+
++

+=
++=

=

kH

xx
kCkC

Cw
xx

COST

λ
λ (4.33)

Equation 4.33 proves step b of the inference and so we can conclude that the mean

transition cost per bit, over all possible initial bus states (So) is simply wH (1+ 2λ), for any

given codeword Cl. ■

 32

4.3 Transmission Cost for Differential Low-Weight Encoding

In this scheme, only the codewords with Hamming weight smaller than a threshold wmax

are selected. As explained in the previous section, the mean cost over initial bus states is

the same for all the codewords of the same Hamming weight wH and can be computed by

wH (1+ 2λ). Thus, mean energy per bit for a differential low-weight code of length n is as

follows:

∑
∑

∑

∑

=

=

=

=









×









+

=










+×







×

=

max

0max

0

max

0

max

0

21

)21(

w

i
w

i

w

i

w

i
b

i
n

i

i
n

n

i
n

n

i
n

i
E

λ

λ

And so,

∑
∑ =

=









×









+

=
max

0max

0

21 w

i
w

i

b
i
n

i

i
n

n
E λ (4.34)

 33

4.4 Transmission Cost for Uncoded Scheme

In the uncoded scheme, every sequence in the set S = {0, 1}n may be transmitted on the

bus. Thus, the transition vectors are all elements of set S and the mean energy per bit is

computed as follows:

λ

λ

λ

λ

λ

+=

+
=

×
×
+

=









×









+

=










+×







×

=

∑
∑

∑

∑

=

=

=

=

5.0

2
21

)2
2

(
2
21

21

)21(

max

0

0

0

0

n
n

w

in

i

n

i

n

i
b

n
n

i
n

i

i
n

n

i
n

n

i
n

i
E

λ+= 5.0bE (4.35)

As Equation 4.35 shows the mean cost per bit is a constant depending on λ when no

encoding is used. Note that transmission rate in this case is equal to 1. Thus, the rate is

ideal, while the cost is high compared to the encoded case.

 34

Chapter 5

The Proposed Encoding Scheme

As explained in the previous chapters, the differential low weight encoding is an

efficient and low complexity scheme that achieves most of the transmission cost

reduction possible, on DSM buses [1].

In this chapter, we propose an enumeration method to be used with the differential low-

weight coding. This enumeration method reduces the mapping table size from O(2n)

words to O(n) words, for an n-bit bus. Thus, it reduces the memory complexity

significantly, especially when n is large. Furthermore, it facilitates less power dissipation

and delay, as it eliminates the need for addressing and fetching data from very large

tables in memory.

 35

Furthermore, we exploit the same direction and opposite direction transitions to achieve

more cost reduction. For each selected low weight codeword, we compute a help

codeword (from those high weight codewords which are not selected) on the fly. The

help codewords result in lower cost for some initial bus states. They are computed by

simple operations like complement and rotate and so reduce the cost without any extra

memory or bus lines.

This chapter is organized as follows. First we propose a new set for representing the

codewords and the Low-Weight order for this set. We also define a number of operations

on this set. Then, we explain the proposed encoding scheme and application of the Low-

Weight order in the proposed enumeration process, in detail. At the end, we present the

Help codewords and simulation results. For the terms and definitions used in the

following sections, refer to Chapter 2.

5.1 Low-Weight Order

Let set Pk = {1, 2, 3… n}k denote all the n-ary permutations of k symbols (not

necessarily distinct) chosen from the alphabet {1, 2, 3… n} such that the sum of the

digits of each permuted sequence is smaller than or equal to n. Thus, permutation p ∈ Pk

is of length k and may be denoted as d1, d2…dk where di ∈ {1, 2, 3… n}. For simplicity,

we denote p with d1d2…dk when n <10 (no comma between symbols). We define the set

Pk, 1 ≤ k ≤ n as the union of sets P1, P2... and Pn. Using the phrase representation

introduced in Chapter 2.4, each permutation p ∈ Pk may be expanded to obtain a binary

sequence c. Note that the constraint on the sum of the symbols of p ∈ Pk guarantees that

the length of c is smaller than or equal to n and transmitting it on a DSM bus requires no

more than n lines. In other words, the length of the binary sequence corresponding to

 36

each permutation is limited to n. We require this constraint, as we have a limited number

of bus lines for data transmission.

Recall the lexicographic ordering introduced in Chapter 2.5. This ordering scheme

considers the rightmost digit as the least significant digit (LSD) and the leftmost one as

the most significant digit (MSD), in computing the lexicographic index (rank).

Alternatively, we define the low-weight order for which the rightmost symbol is the MSD

and the rank for x= (x1, x2 … xk)∈ Pk, 1≤ k≤ n is computed by the Equation 5.1. In this

equation, nk
S(x1, x2 … xu) denotes the number of elements in Pk, 1≤ k≤ n for which the

first u coordinates are (x1, x2 … xu). Also, |Pk| denotes the cardinality of set Pk.

∑ ∑∑
=

−

=
−

−

=
+=

k

j

jx

t
j

k
S

k

h

h
S txxxnPxi

1

1

0
121

1

1
),,...,,(||)((5.1)

Note that extend the Low-Weight order extends to different values of 1 ≤ k ≤ n.

Specifically, for x= (x1, x2 … xk) ∈Pk1 and y= (y1, y2 … yk)∈Pk2 we have x < y if k1 < k2.

So, f -1
phrase(x) has a lower Hamming weight compared to f -1

phrase(y). We exploit this

ordering to decrease the transmission cost by choosing the lower weight codewords

before and sooner than the higher weight ones.

For example, Table 5.1 shows the elements of set Pk with 1≤ k≤ 5 and from alphabet

{1, 2, 3, 4, 5}, sorted in Low-Weight order.

 37

index p Index p
1 1
2 2
3 3
4 4
5 5
6 11
7 21
8 31
9 41
10 12
11 22
12 32
13 13
14 23
15 14

16 111
17 211
18 311
19 121
20 221
21 131
22 112
23 212
24 122
25 113
26 1111
27 2111
28 1211
29 1121
30 1112
31 11111

Table 5.1 Low-Weight order for entries of set Pk, 1≤ k≤ 5.

5.2 Operations for Low-Weight Ordered Numbers

5.2.1 Low-Weight Count

Low-Weight count enables us to find the n-bit codeword Ci+1 that follows (appears

1codeword after) a given n-bit codeword Ci, in Low-Weight order. The algorithm is

depicted in Figure 5.1. In this algorithm Ci denotes the f -1
phrase of an element pi in set Pk =

{1, 2, 3… n}k, 1≤ k≤ n.

 38

if Ci terminates in 0 /*case 1*/

Shift Ci to right by 1 to obtain Ci+1.

else

Find the first phrase p in Ci.

if there exists a 1 after phrase p in Ci /*case 2*/

 C′ = Shift only phrase p to left by 1

 else /*case 3*/

 C′ = Insert a 1 at the beginning of the sequence and remove a 0 in p

 Ci+1 = Move the zeros of the first phrase in C′ to the end of the sequence.

Figure 5.1 The Low-Weight count algorithm.

Examples:

Case 1. In Table 5.1, the 11th entry is Ci = f -1
phrase (22) = 01010 and the 12th entry is

Ci+1= 00101 = f -1
phrase (32).

Case 2. In Table 5.1, the 9th element is Ci = f -1
phrase (41) = 00011, p = 0001 (bits 1 to 4

of Ci), C′ = 00101 and Ci+1= 10100 = f -1
phrase (12). Note that 12 is the 10th entry in

Table 5.1.

Case 3. In Table 5.1, the 25th element is Ci = f -1
phrase (113) = 11001, p = 001 (bits 3 to

5 of Ci), C′ = 11101 and Ci+1= 11110 = f -1
phrase (1111). Note that 1111 is the 26th

entry in Table 5.1.

 39

5.2.2 Low-Weight Division

Figure 5.2 shows the division algorithm. The Low-Weight division of an integer x by a

list of integers (y1, y2 … yk) is denoted by fdiv (x, (y1, y2 … yk)). Similar to normal integer

division, this operation is implemented by successive subtractions. The only difference is

that instead of subtracting a fixed integer (dividend) all the time, each time one of the

elements in the dividend list is subtracted from the divider x.

The operation fdiv (x, (y1, y2 … yk)) results in the quotient q and remainder r if and only if

x = y1+ y2 +… +yq+ r, where r < yq.

/*Low-Weight Divide algorithm*/

i=1, q=0

While x ≥ yi

 x = x - yi

 q = q+ 1

 i = i+1;

r = x;

Figure 5.2 The Low-Weight division algorithm.

5.2.3 Low-Weight Addition

Consider the first vector of weight wH in Low-Weight order for different values of 1 ≤

wH ≤ n. For example, for n = 4, these vectors are 1, 11, 111, and 1111. Recall that the

corresponding binary codewords are 1000,1100,1110,1111, respectively. We denote such

codewords with Hw1 to indicate that the number of ones is wH ≤ n.

 40

Low-Weight addition enables us to find the n-bit codeword Ci+x that appears x (a given

integer in base 10) codewords after Ci = Hw1 , the first codeword of weight wH in Low-

Weight order. This operation is required for the enumeration process and we explain it,

in detail.

Note that the number of trailing zeros for)1(1
Hwphrasef − is n- wH. We define y = n+1- wH.

In fact, y -1 is the number of trailing zeros for)(1
iphrase Cf − . Consider Hw1 and its phrase

representation p = d1, d2… dwH, where di = 1 for 1≤ i≤ wH. The following rules are used to

add p with a (an integer in base 10) in the Low-Weight addition.

Rule 1: if a ∈{1, 2 … y-1} then add integer ‘a’ to the leftmost 1 in phrase

representation p.

Rule 2: ∑
−

=
≥≥−=

xy

i
xyiya

0
2forif , then the 2nd leftmost digit in the phrase

representation p is increased by x +1.

Define
2

)1()(
1

1
+

== ∑
=

yyiyf
y

i
,

Rule 3: 2for)(if 1 ≥≥= ∑
=

xyifX
y

xi
, then the 3rd leftmost digit in the phrase

representation p is increased by (y- x) +1.

Define ∑
=

=
y

i
ifyf

1
12)()(,

 41

Rule 4: 2for)(if 2 ≥≥= ∑
=

xyifX
y

xi
, then the 4th leftmost digit in the phrase

representation p is increased by (y- x) +1.

…

Define ∑
=

− −==
y

i
Hkk wkifyf

1
1 2),()(,

The final Rule: 2for)(if ≥≥= ∑
=

xyifX
y

xi
k , then the wH

th (last) leftmost digit in the

phrase representation p is increased by (y- x) +1.

Note that kiyfyfyf iii ...2,1for)()()1(1 =−=− − .

For example, consider p =1111 = d1d2d3d4, the phrase representation of c =111100000

for n = 9 and List 1 (at the end of this Chapter) which shows all codewords with wH = 4

and n = 9 in Low-weight order. Recall that y = n+1- wH= 6.

If X = 1 then d1 increases by 1.

If X = 2 then d1 increases by 2.

…

If X = y -1 =5 then d1 increases by 5.

If X = y = 6 then d2 increases by 1.

If X = y + (y – 1) = 6 + 5 = 11 then d2 increases by 2.

…

If X = y + (y – 1) + … + 2 = 6 + 5 + 4 + 3 + 2 = 20 then d2 increases by 5.

 42

If X = f1(y) = 6.7/2 = 21 then d3 increases by 1.

If X = f1(y) + f1 (y – 1) = 21 + 15 = 36 then d3 increases by 2.

…

If X = f1(y) + f1 (y – 1) + … + f1 (2) = 21 + 15 + 10 + 6 + 3 = 55 then d3 increases by 5.

If X = f2(y) = 21 + 15 + 10 + 6 + 3 + 1= 56 then d4 increases by 1.

If X = f2(y) + f2 (y – 1) = 56 + (56 -21) = 91 then d4 increases by 2.

…

If X = f2(y) + f2 (y – 1) + … + f2 (2) = 56 + 35 + … = 125 then d4 increases by 5.

For ordinary integers (of any base), any given digit increases over equal distances

determined by base. For example, let x be a natural number. The integer 20 appears x

integers after 10 in base x. Similarly, the integer 30 appears x integers after 20.

However, using the Low-Weight order, the digits of phrase representation p of a given

binary sequence c, do not increase on equal intervals. This fact is indicated by the rules of

the Low-Weight addition introduced above. For example, consider List 1 at the end of

this chapter. There are 5 integers between 1111 and 1211, while 10 integers appear

between 1211 and 1311. Although a fixed interval over which a given digit increases

does not exist, it is possible to predict how the interval changes for each digit of p as the

above rules imply.

To increase phrase p of length wH by X (in base 10), we compute the amount of increase

for the rightmost digit in p (the most significant digit in Low-Weight order sequences)

 43

using the Low-Weight division operation. Then, we update X, and repeat the same

procedure for the following digits until the leftmost digit (the least significant digit in

Low-Weight order sequences) is processed or X is zero. The following algorithm

completes Low-Weight addition in O(n×wH
2) time and O(n) space.

/*Low-Weight increase by X algorithm*/

/*X ≤ 








Hw
n

-1 */

/* p = d1d2…dwH, di =1 for 1≤ i≤ wH*/

/*Find y, the number of trailing zeros of the …*/
/* sequence represented by p*/

y = n - wH +1

for each digit di , wH ≥ i ≥ 2

 Y = (y, y-1, y-2…2, 1)

 for counter = 1 to wH-2

 ∑
=

=
y

ji
ij YY

 Evaluate fdiv (X, Y) to get q and r

 /* Update X */
 X=r

 /* Update phrase p*/
 di =di +q

 /* Update y */
 y =y – q

d1 =d1+ r

Figure 5.3 The Low-Weight addition algorithm.

 44

5.2.4 The Low-Weight Subtract

Consider the phrase representation p0 as the first vector of weight 1 ≤ wH ≤ n in Low-

Weight order. Also, consider p as a given codeword of same Hamming weight as p0.

Suppose that codeword p appears cnt codewords after p0, in Low-Weight order. The

Low-Weight subtract operation takes p0 and p and computes cnt, the distance between p0

and p.

/*Low-Weight subtract algorithm*/

/* p = d1d2…dwH, di =1 for 1≤ i≤ wH*/

y = n - wH +1

for each digit di , wH ≥ i ≥ 2

 cnt = 0

 Y = (y, y-1, y-2…2, 1)

 for counter = 1 to wH-2

 ∑
=

=
y

ji
ij YY

 ∑
−

=
−++=

1

1
1 1

id

j
j dYcntcnt

Figure 5.4 The Low-Weight subtract algorithm.

5.3 The Proposed Encoding Scheme

For a transmitting m-bit data we require at least m bus lines. We increase number of bus

lines to n > m lines, such that m/n is greater than or equal to the desired transmission rate.

The encoding idea is to find a function that maps an m-bit data sequence to a low

Hamming weight n-bit codeword.

 45

Let L1 be the list of all binary sequences in {0, 1}m, in normal ascending order. For

example, using an indexing system starting at zero, the index for the all zeros sequence is

zero and the index for the all ones sequence is 2m-1. Also, list L2 is the list of all n-ary

sequences in Pk, 1≤ k≤ n, in Low-Weight order. We expand (using f -1
phrase) and map the

ith element of L2 as the codeword for the ith element of L1, for 0≤ i≤ 2m-1. Table 5.2

shows the 5-bit codewords assigned to 4-bit data sequences. Note that the codewords are

5-bit binary sequences with low (0, 1 and 2) Hamming weights. This encoding scheme

can be completed on the fly, using enumeration.

5.4 Enumeration Scheme

The question is how to map a given m-bit sequence to an n-bit codeword on the fly

without storing the (data, codeword) pairs in a table. Recall that the table size grows

exponentially with data length and eliminating the table is so useful in terms of memory

complexity.

Let L be a list whose kth element is the number of n-bit binary sequences with exactly k

ones (Hamming weight wH = k). We denote the kth element of L by 







k
n

, and form another

list Lcumulative by cumulative summation of list L. Thus, the kth element of list Lcumulative is

∑
=








k

i k
n

0

 and shows the number of codewords with wH ≤ k. This list grows linearly with wH

and does not need a large memory space. Furthermore, based on Equation 5.2, we may

keep only half of the list and compute the rest on the fly and save more space.









=








21 k

n
k
n

 , nkk =+ 21 (5.2)

 46

Index

L1
Binary Data

L2
Codeword Phrase
Representation

Codeword

0 0000 0 00000
1 0001 1 10000
2 0010 2 01000
3 0011 3 00100
4 0100 4 00010
5 0101 5 00001
6 0110 11 11000
7 0111 21 01100
8 1000 31 00110
9 1001 41 00011
10 1010 12 10100
11 1011 22 01010
12 1100 32 00101
13 1101 13 10010
14 1110 23 01001
15 1111 14 10001

Table 5.2 Mapping 4-bit data sequences to 5-bit codewords.

The proposed encoding scheme allows replacing the table of (data, codeword) pairs

with Lcumulative list and enables enumerative coding. The enumeration scheme includes the

following steps for mapping data D to codeword C.

1. Use Lcumulative list to find the Hamming weight of codeword C by Equation 5.3.

1)(
0

1

0
−=⇔








<≤








∑∑
=

−

=
kCw

k
n

D
k
n

H
k

i

k

i
 (5.3)

2. Use Lcumulative list to find the number of codewords (N) with Hamming weights

smaller than the Hamming weight of codeword C denoted by wH (C).

N = Lcumulative (wH (C) - 1) (5.4)

3. Form the first codeword C0 with Hamming weight wH in Low-Weight ordering.

 47

 C0 = A string of wH ones followed by n-wH zeros with the general form: (1, 1 … 1, 0,

0 … 0)

4. Find the codeword that appears cnt = D - N codewords after C0 in Low-Weight

order.

For example, consider finding the 5-bit codeword corresponding to the 4-bit data D =

1010 which is 10 in decimal.

L = {1, 5, 10, 10, 5, 1}

Lcumulative = {1, 6, 16, 26, 31, 32}

In this example, 6 ≤ D = 10 < 16, wH (D) = 1 and N = Lcumulative (0) = 1, C0 = 10000, and

D - N = 9. Thus, to find the corresponding codeword for D = 1010 we should find the

codeword C that appears N = 9 codewords after C0 = 10000 in Low-Weight ordering.

Thus, C = 10100, as Table 5.2 shows.

Similarly, at the decoder side, we can use enumeration to find the data D for a received

codeword C, on the fly. The difference is that we have to use C and compute its Low-

Weight rank which is the corresponding data. Recall that at the encoder we used the data

rank to compute C. The following steps complete the enumeration for at the decoder:

1. Count the number of ones of codeword C to find its Hamming weight wH (C).

2. Use Lcumulative list to find the number of codewords (N0) with Hamming weights

smaller than wH (C).

N0 = Lcumulative (wH (C) - 1) (5.5)

3. Form C0 as before, at the encoder.

4. Codeword C appears cnt codewords after C0. Use the Low-Weight Subtract to

find cnt.

 48

5. Compute D = cnt + N0.

5.5 Using help Codewords

We showed that the codewords of lower Hamming weights have less mean

transmission cost per bit, compared to larger weight ones. On the other hand, for some

initial bus states, a high weight transition codeword may result in smaller cost. For

example, if the initial bus state S0 = 101010000 then the transition codeword c1 =

111100000 is more costly than c2 = 000011111, while it has a lower Hamming weight.

Therefore, after selecting the low weight codewords, we assign a help codeword from

the unselected higher weight codes to each selected low weight codeword. Before

transmission on the bus, we compute the transmission cost for both the codeword and the

help codeword. The codeword which results in smaller cost is placed and transmitted on

the bus. This approach helps to gain more cost reduction, compared to the original

differential low-weight coding scheme.

We add another step to this to reduce the cost more. Consider the phrase representation

p = p1p2…pk of the extra codeword assigned to a given low weight codeword. Phrase

rotation of p to the right to obtain p = pk p1p2… pk-1 is helpful to reduce the cost, as well.

For example, consider codeword c = 010100101 the complement is c′ = 101011010 and p

=12212, which cannot help reduce the transmission cost of c for any initial bus states.

Phrase rotation of p however, results in p =21221, or equivalently 011010110, which has

a smaller transmission cost for initial bus states like xccxxxcc, where there are no

restrictions on each x and any run of consecutive bits depicted by c must be all 1 or all 0.

 49

5.6 Simulation Results

We employed the proposed encoding method to transmit data on 16-bit, 32-bit and 64-

bit buses at the maximum possible rate, where only one extra line bus is added. Tables

5.3-5.5 compare the uncoded and the differential low-weight methods with the proposed

method. As the tables show, in all cases the proposed method results in better cost (power

and delay) reductions. We can achieve more power reduction by adding more bus lines.

The tables show that the proposed method results in power reduction, for the most limited

case (worst case), where only one extra bus line is allowed. Moreover, the proposed

method requires O(wH) tables, where wH is the maximum Hamming weight of the

selected codewords. Recall that the low-weight encoding scheme requires O(2n) tables for

n-bit buses. Thus, there is a considerable reduction in size of tables and the system

memory requirements.

Method k n E/codeword E/bit E Normalized

Uncoded 16 16 88 5.5 1

Dif. low-weight 16 17 75.1181 4.6949 0.8536

Proposed 16 17 71.6958 4.4810 0.8147

Table 5.3 Comparison of different transmission methods for 16-bit bus.

According to Table 5.3, the proposed encoding achieves 18.5% compared to uncoded

and 1-71.6958/75.1181=4.6% improvement compared to the differential low-weight

encoding. This table shows the simulation results for 1e6 randomly chosen input samples.

 50

Method k n E/codeword E/bit E Normalized

Uncoded 32 32 176 5.5 1

Dif. low-weight 32 33 156.1017 4.8782 0.8869

Proposed 32 33 150.6102 4.7066 0.8557

Table 5.4 Comparison of different transmission methods for 32-bit bus.

Table 5.4 shows that the proposed encoding achieves 14.5% compared to uncoded and

(1-150.6102/156.1017)100 = 3.5% improvement compared to the differential low-weight

method. This table shows the simulation results for 118e6 randomly chosen input

samples.

Method k n E/codeword E/bit E Normalized

Uncoded 64 64 352 5.5 1

Dif. Low-weight 64 65 3.2195e2 5.0305 0.9146

Proposed 64 65 3.1373e2 4.9021 0.8913

Table 5.5 Comparison of different transmission methods for 64-bit bus.

Table 5.5 shows that the proposed encoding reduces the transmission cost 10.87%

totally and (1-3.2195e2/3.1373e2)100 = 2.6% more than the differential low-weight

 51

method for a 64-bit DSM bus. This table shows the simulation results for 1e6 randomly

chosen input samples.

We also compared two methods for finding the helping codewords: complement and

phrase rotate and complement only. Table 5.6 shows the results for an 8-bit bus. As the

table indicates the ‘complement and phrase rotate’ method results in better power

reduction compared to ‘complement only’.

Extra Codeword

Selection Method

Rate E/ codeword E/bit Improvement vs. Dif.

Low-weight

(Comp. & Phrase

Rotate)

8/9 34.0922 4.2615/4.4969 5.2%

Complement 8/9 34.2915 4.2864/4.4969 4.6%

Table 5.6 Mapping 4-bit data sequences to 5-bit codewords.

Note that our simulations are for the highest possible rate were only one extra line is

added. We can achieve more reduction by adding more lines. However, we cannot add

too many lines as it decreases the rate (the number of useful transmitted bits per bus use).

For optimal number of bus lines refer to Section 3.6.

 52

Chapter 6

Conclusions

In the deep submicron technology (DSM), the coupling between lines (inter-wire

capacitance) is much stronger than the coupling between individual lines and ground and

the energy caused by parasitic capacitance is non-negligible [1-6]. Equations of the DSM

buses indicate that the energy and delay depend on the sequence of data transmitted on

the bus. Encoding is an efficient way for controlling the transmitted sequence on the bus

and many encoding schemes have been used to reduce energy and delay on DSM buses,

in the literature [7-15]. Note that to be effective, the encoder and decoder systems should

have small energy and delay values.

The differential low-weight coding [1] is a simple differential scheme that achieves

most of the possible energy reduction, from an information theory point of view. This

efficient scheme employs differential coding and selects transition codewords of smaller

Hamming weights for transmission on the bus. Thus, it is based on reducing the transition

activity on the bus. However, this coding scheme requires tables of size O(2n) for an n-

line bus, which is a significant overhead, especially when the number of bus lines is

 53

large. Also, it does not take into account some characteristics of the DSM buses that can

be exploited to reduce the transmission cost further.

We proposed an enumeration method that reduces the required table-size of the

differential low-weight encoder from O(2n) words to O(n) words, for an n-line bus and

achieves considerable gain in terms of memory complexity. Furthermore, it facilitates

less power dissipation and delay, as it eliminates the need for addressing and fetching

data from very large tables in memory.

We also defined a cost function which could control both the energy and delay on DSM

buses. We modified the energy and delay equations of DSM buses and developed a new

representation in terms of number of the same and opposite direction transitions on the

bus. We used these equations in our interconnect analysis to reduce the transmission cost

further and to develop closed form formulas for computing the mean transmission cost

per bit on DSM buses for both differential low-weight encoding and uncoded schemes.

We employed simple operations like complement and rotate, to compute help

codewords (from the set of unselected codewords) on the fly, and assign them to the

selected codewords. Note that the help codewords enable us to achieve more cost

reduction, without increasing the memory complexity or number of the bus lines.

The simulation results for 16-bit, 32-bit and 64-bit buses at maximum rate (only one

extra line added) show that the proposed encoding scheme achieves more than 10% cost

reduction, and performs more than 2.5% better than to the original differential low-

weight scheme, in the worst case.

 54

Bibliography

1. P. Sotiriadis, V. Tarokh, A. Chandrakasan, “Maximum achievable energy

reduction using coding with applications to deep sub-micron buses,” IEEE
International Symposium on Circuits and Systems, Vol. 1, pp. I-85 - I-88, May
2002.

2. D. Sylvester, Wu Chenming, “Analytical modeling and characterization of deep-

submicrometer interconnect,” Proceedings of the IEEE, Vol. 89, No. 5, pp. 634 –
664, May 2001.

3. P.P. Sotiriadis, A. Chandrakasan, “A bus energy model for deep submicron

technology,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 10, No. 3, pp. 341 – 350 , June 2002.

4. P.P. Sotiriadis, A. Chandrakasan, “Reducing bus delay in submicron technology

using coding,” Proceedings of the Design Automation Conference, pp. 109 – 114,
Jan. 2001.

5. T. Sakurai, “Closed-form expressions for interconnection delay, coupling, and

crosstalk in VLSI,” IEEE Transactions on Electron Devices, Vol. 40, No. 1, pp.
118 – 124, Jan. 1993.

6. P.P. Sotiriadis, A. Chandrakasan, “Power Estimation and Power Optimal

Communication in Deep Sub-Micron Buses: Analytical Models and Statistical
Measures,” Journal of Circuits, Systems and Computers, Vol. 11, No. 6, pp. 637-
658, 2002.

7. P. Sotiriadis, V. Tarokh, A. Chandrakasan, “Energy reduction in VLSI

computation modules: an information-theoretic approach,” IEEE Transactions on
Information Theory, Vol. 49, No. 4, pp. 790 – 808, April 2003.

8. M.R. Stan, W.P. Burleson, “Bus-invert coding for low-power I/O,” IEEE

Transactions on Very Large Scale Integration Systems, Vol. 3 , No. 1, pp. 49 –
58, March 1995.

9. P.P. Sotiriadis, A. Chandrakasan, “Low power bus coding techniques considering

inter-wire capacitances,” Proceedings of the IEEE Custom Integrated Circuits
Conference, pp. 507 – 510, May 2000.

10. D. Rossi, V.E.S. van Dijk, R.P. Kleihorst, A.H. Nieuwland, C. Metra, “Coding

scheme for low energy consumption fault-tolerant bus,” Proceedings of the
Eighth IEEE International Workshop on On-Line Testing, pp. 8 – 12, July 2002.

 55

11. V. Sundararajan, K. K. Parhi, “Data transmission over a bus with peak-limited
transition activity,” Proceedings of the ASP Design Automation Conference, pp.
221 – 224, Jan. 2000.

12. S. Ramprasad, N. R. Shanbhag, I. N. Hajj, “A coding framework for low-power

address and data busses,” IEEE Transactions on Very Large Scale Integration
Systems, Vol. 7, No. 2, pp. 212 – 221, June 1999.

13. S. Ramprasad, N. R. Shanbhag, I. N. Hajj, “Signal coding for low power:

fundamental limits and practical realizations,” IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, Vol. 46, No. 7, 923 – 929,
July 1999.

14. D. Marculescu, R. Marculescu, M. Pedram, “Information theoretic measures for

power analysis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 15, No. 6, pp. 599 – 610 , June 1996.

15. N. R. Shanbhag , “A mathematical basis for power-reduction in digital VLSI

systems,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, Vol. 44, No. 11, pp. 935 – 951, Nov. 1997.

16. S. Datta, S. W. Mclaughlin, “Optimal Block Codes for M-ary Runlength-

Constrained Channels,” IEEE Trans. on Information Theory, Vol. 47, No. 5, July
2001.

17. T. M. Cover, “Enumerative source coding,” IEEE Trans. Inform. Theory,
 Vol. IT-19, pp. 73–77, Jan. 1973.

18. M.A. Elgamel, M.A. Bayoumi, “Interconnect noise analysis and optimization in
deep submicron technology,” IEEE Circuits and Systems Magazine, Vol. 3, No.
4, pp. 6-17, 2003.

19. M.R. Stan, W. P. Burleson, “Low-power encodings for global communication in

CMOS VLSI,” IEEE Transactions on Very Large Scale Integration Systems, Vol.
5, No. 4, pp. 444 – 455, Dec. 1997.

20. http://www.synopsys.com/products/tlr/flexroute_wp.pdf.

 56

Appendix

List 1 List of the codewords with Hamming weight equal to 4 for n = 9, in Low-weight
order.

X p c
0 1111 111100000
1 2111 011110000
2 3111 001111000
3 4111 000111100
4 5111 000011110
5 6111 000001111
6 1211 101110000
7 2211 010111000
8 3211 001011100
9 4211 000101110
10 5211 000010111
11 1311 100111000
12 2311 010011100
13 3311 001001110
14 4311 000100111
15 1411 100011100
16 2411 010001110
17 3411 001000111
18 1511 100001110
19 2511 010000111
20 1611 100000111
21 1121 110110000
22 2121 011011000
23 3121 001101100
24 4121 000110110
25 5121 000011011
26 1221 101011000
27 2221 010101100
28 3221 001010110
29 4221 000101011
30 1321 100101100
31 2321 010010110
32 3321 001001011
33 1421 100010110
34 2421 010001011
35 1521 100001011
36 1131 110011000
37 2131 011001100
38 3131 001100110
39 4131 000110011

 57

40 1231 101001100
41 2231 010100110
42 3231 001010011
43 1331 100100110
44 2331 010010011
45 1431 100010011
46 1141 110001100
47 2141 011000110
48 3141 001100011
49 1241 101000110
50 2241 010100011
51 1341 100100011
52 1151 110000110
53 2151 011000011
54 1251 101000011
55 1161 110000011
56 1112 111010000
57 2112 011101000
58 3112 001110100
59 4112 000111010
60 5112 000011101
61 1212 101101000
62 2212 010110100
63 3212 001011010
64 4212 000101101
65 1312 100110100
66 2312 010011010
67 3312 001001101
68 1412 100011010
69 2412 010001101
70 1512 100001101
71 1122 110101000
72 2122 011010100
73 3122 001101010
74 4122 000110101
75 1222 101010100
76 2222 010101010
77 3222 001010101
78 1322 100101010
79 2322 010010101
80 1422 100010101
81 1132 110010100
82 2132 011001010
83 3132 001100101
84 1232 101001010
85 2232 010100101

 58

86 1332 100100101
87 1142 110001010
88 2142 011000101
89 1242 101000101
90 1152 110000101
91 1113 111001000
92 2113 011100100
93 3113 001110010
94 4113 000111001
95 1213 101100100
96 2213 010110010
97 3213 001011001
98 1313 100110010
99 2313 010011001
100 1413 100011001
101 1123 110100100
102 2123 011010010
103 3123 001101001
104 1223 101010010
105 2223 010101001
106 1323 100101001
107 1133 110010010
108 2133 011001001
109 1233 101001001
110 1143 110001001
111 1114 111000100
112 2114 011100010
113 3114 001110001
114 1214 101100010
115 2214 010110001
116 1314 100110001
117 1124 110100010
118 2124 011010001
119 1224 101010001
120 1134 110010001
121 1115 111000010
122 2115 011100001
123 1215 101100001
124 1125 110100001
125 1116 111000001

	Georgia State University
	Digital Archive @ GSU
	5-12-2005

	Delay and Power Reduction in Deep Submicron Buses
	Sharareh Babvey
	Recommended Citation

