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ABSTRACT 

 

 

USING THREE DIFFERENT CATEGORICAL DATA ANALYSIS TECHNIQUES 

TO DETECT DIFFERENTIAL ITEM FUNCTIONING 

by 

Torie A. Stephens-Bonty 
 

 

 Diversity in the population along with the diversity of testing usage has resulted 

in smaller identified groups of test takers. In addition, computer adaptive testing 

sometimes results in a relatively small number of items being used for a particular 

assessment. The need and use for statistical techniques that are able to effectively detect 

differential item functioning (DIF) when the population is small and or the assessment is 

short is necessary. Identification of empirically biased items is a crucial step in creating 

equitable and construct-valid assessments.  

Parshall and Miller (1995) compared the conventional asymptotic Mantel-

Haenszel (MH) with the exact test (ET) for the detection of DIF with small sample sizes. 

Several studies have since compared the performance of MH to logistic regression (LR) 

under a variety of conditions. Both Swaminathan and Rogers (1990), and Hildalgo and 

López-Pina (2004) demonstrated that MH and LR were comparable in their detection of 

items with DIF. This study followed by comparing the performance of the MH, the ET, 

and LR performance when both the sample size is small and test length is short.  

The purpose of this Monte Carlo simulation study was to expand on the research 

done by Parshall and Miller (1995) by examining power and power with effect size 

measures for each of the three DIF detection procedures. The following variables were 



 

manipulated in this study: focal group sample size, percent of items with DIF, and 

magnitude of DIF. For each condition, a small reference group size of 200 was utilized as 

well as a short, 10-item test. The results demonstrated that in general, LR was slightly 

more powerful in detecting items with DIF. In most conditions, however, power was well 

below the acceptable rate of 80%. As the size of the focal group and the magnitude of 

DIF increased, the three procedures were more likely to reach acceptable power. Also, all 

three procedures demonstrated the highest power for the most discriminating item. 

Collectively, the results from this research provide information in the area of small 

sample size and DIF detection.  
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CHAPTER 1 

INTRODUCTION 

Identification of biased items is a crucial step in creating equitable and construct-

valid assessments. A biased item is by definition one that contains a systematic error 

which causes the results of tests to be invalid (Camilli & Shepard, 1994). The term 

differential item functioning (DIF) describes the empirical evidence used to support or 

refute bias. An item is said to exemplify DIF if individuals with equal ability but different 

group membership have a different probability of solving an item correctly 

(Swaminathan & Rogers, 1990).  

Statistical techniques able to effectively calculate DIF are needed in the current 

testing market where diversity in the population, along with the diversity of testing usage, 

has resulted in varied testing conditions. States are now required to show evidence of DIF 

consideration in the test development process (Standards and Assessments Peer Review 

Guidance, 2004). The No Child Left Behind Act (NCLB, 2002) requires schools to 

demonstrate adequate yearly progress (AYP) for each identified student group (e.g., 

groups based on ethnicity, socioeconomic status, or disability) each of these groups might 

only contain a small number of students. Small numbers of participants per test is 

common in translation and adaptation tests as well. Also, computer adaptive testing 

sometimes results in a relatively small number of examinees answering a particular 

question or item. This has resulted in a re-examination of DIF detection methods when 

the testing population is small or when the focal group (e.g., minority group) is small in 
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size. As tests and technology change, methods of detecting DIF have had to adjust 

accordingly. The result is myriad detection methods continually becoming more effective 

in detecting DIF.  

Identifying which DIF detection method (or methods) is most effective is vital in 

the current testing climate. The relationship between sample size and DIF detection 

performance should not be ignored. Each detection method has limitations regarding 

sample size. Identifying the confines of each method is essential. A comparison of 

methods would provide researchers with data useful in selecting a DIF detection method 

when there is a small sample size for the focal group.   

This study compares the effectiveness of three DIF detection methods in their 

performance when sample sizes are small and the test length is short. The first method, 

the Mantel-Haenszel (MH), was chosen because of its widespread usage in the testing 

industry. The MH is based on an asymptotic approximation of an exact distribution. 

Because it is an approximation, its performance is expected to weaken as sample size 

decreases. This is in contrast to the second method, the exact test (ET), which allows 

users to calculate exact probabilities as opposed to relying on the asymptotic 

approximation. Because the ET relies on exact probabilities, it is expected to be more 

powerful in detecting DIF than asymptotic methods with small sample sizes (Agresti, 

1996). The third DIF detection method, logistic regression (LR), was included in the 

study because other studies revealed it to be as effective in DIF detection as the MH. 

Conversely, small sample sizes may present a problem for LR. Typically, small sample 

sizes inhibit the estimation of the model parameters used in the regression equation 

(Agresti, 1996).  



3 

 

The primary purpose of this study was to extend the work done by Parshall and 

Miller (1995) in which they compared the performance of the exact test (Agresti, 1996) 

with the conventional asymptotic Mantel-Haenszel (Mantel & Haenszel, 1959) test for 

the detection of DIF with small sample sizes. Few published studies prior to Parshall and 

Miller’s (1995) compared methods regarding their effectiveness in DIF detection with 

small sample sizes. In addition to the MH and the exact test, the performance of logistic 

regression was examined in this study along with measures of practical significance. 

Additional conditions were also examined including larger DIF magnitudes and smaller 

focal group sample sizes. 

This study demonstrated how each of the three techniques performed in detecting 

DIF under small sample size conditions. Given the increased task of evaluating the 

effects of DIF on small sample subgroups, it is important to identify what circumstances 

restrict each method’s effectiveness. With this in mind, comparing the exact test, MH, 

and logistic regression will identify strengths and weaknesses in DIF detection with small 

sample sizes. Effect size (ES) measures will assist in identifying the practical significance 

of the results. 
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CHAPTER 2  

REVIEW OF LITERATURE 

The review of the literature begins with an evaluation of relevant terminology and 

an overview of previous research on the effectiveness of statistical testing in detecting 

DIF with regard to sample size. The examination then proceeds to a brief discussion of 

DIF. Next, an overview of DIF detection methods is given. Research on the effectiveness 

of the MH, the exact test, and logistic regression in detecting DIF when sample sizes are 

small is then presented.  

There are a number of important terms that are used when referencing the 

literature on DIF detection. This section provides a review of terms used throughout the 

study including: (1) group membership, (2) test, (3) ability, (4) DIF, and (5) bias. 

(1) Group membership. In the field of DIF detection, group membership refers to 

the label given to a set of examinees. Often the label is assigned based on a 

certain demographic characteristic. For example, race, ethnicity, socioeconomic 

status (SES), gender, or native language can be used to define a group. Individuals 

belonging to the majority group (e.g., English speakers, Caucasians) are typically 

categorized as the reference group. The focal group is made up of individuals 

belonging to the identified minority (e.g., non-English speakers, Hispanics). DIF 

detection is a comparison of the relative performance of the focal group to the 

reference group. 
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(2) Test. A test is defined in this study as an instrument which measures an 

attribute that is not clearly observable. A test can be further explained as a 

collection of items believed to be a representative sample of the behavior or trait 

that is being measured. Thorndike (1997) states, “we never measure a thing or a 

person. We always measure a quality or an attribute of the thing or the person” 

(p.9). This not only gives us a working definition of test but it also reminds us that 

what is being measured by the test is used to reveal something about the 

examinee. 

(3) Ability. Tests are typically used to measure the ability (e.g., math or reading) 

of the test taker. Ability refers to the proficiency of a person in a specific area. 

Rasch (1993) said, “A person having a greater ability than another should have 

the greater probability of solving any item of the type in question, and similarly, 

one item being more difficult than another one means that for any person the 

probability of solving the second item correctly is the greater one” (p. 117).  

(4) Differential Item Functioning. An item is said to contain DIF if individuals 

having the same ability but belonging to different groups perform differently on 

that item. Hambleton, Swaminathan, and Rogers (1991) define DIF as the 

empirical evidence obtained in investigations of bias. The presence of DIF is seen 

as evidence against test fairness. Oftentimes this occurs when the focal group’s 

performance is poorer than that of the reference group’s on an item after the two 

groups have been matched by ability. 

An illustrative example of DIF could be a situation where a student’s reading 

comprehension is being assessed. The girls (focal group) taking the test are, 
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however, impeded by items referencing boxing. The poor performance of girls 

observed on the boxing items (comparable to boys) may not be due to their 

reading comprehension ability but instead due to their lack of knowledge about 

the sport.  

(5) Bias. When a test performs as it was designed, examinees with the same 

ability have similar if not identical total scores. When this does not occur, it is 

possible that the test or a specific item (or items) on the test may be biased. To be 

identified as biased, an item must measure some construct other than the construct 

it was intended to measure. The first step in detecting bias is to identify if DIF 

exist for the item in question. Secondly, when there is empirical evidence, DIF, 

the cause of the difference in performance on the item between the two groups 

must be identified. When the cause of the DIF is not relevant to the construct 

being assessed, the item is identified as bias. However, if the cause of DIF is 

related to the construct being assessed, the item is not bias. The term bias is more 

specific than the term DIF. An item identified as biased can alter the test’s 

meaning by assessing a construct that differs from the one the test was intended to 

measure.  

Methods of Identifying DIF 

Since tests are designed to estimate an individual’s true ability despite group 

membership, DIF detection is an important topic for educational researchers and has thus 

been extensively studied. The history of the development of methods to detect DIF partly 

overlaps with the history of item response theory (IRT). It may be insufficient to discuss 

DIF without mentioning IRT-based methods of detecting DIF. DIF identification 

methods can be divided into two general categories: (1) IRT-based methods and (2) non-
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IRT methods. The first group of methods is comprised of the comparison of item 

parameters and the area between Item Characteristic Curves (ICC; Hambleton, 

Swaminathan, & Rogers, 1991). Included in the second group are classical test theory 

(CTT) methods, factor analysis (FA) methods, and categorical-data-analysis-based 

methods (Gómez-Benito & Navas-Ara, 2000).  

In categorizing the methods to detect DIF, it is important to note that the model 

chosen to analyze the data does not necessarily dictate the model used to identify DIF; 

this is the case with IRT models. Large testing companies sometimes use IRT-based 

models to analyze their data and non-IRT methods for DIF detection. This is not unusual, 

given the weakness of DIF identification when IRT-based DIF detection models are used 

with smaller sample sizes (Crane et al., 2004). The type of estimation used with IRT 

methods requires a large number of examinees (at least a size of 250 in each group) and a 

large ability range to be effective (Embretson & Riese, 2000). The use of IRT in 

identifying DIF typically requires that the item parameters are estimated separately for 

the reference group and the focal group (Hambleton et. al, 1991). A major advantage of 

non-IRT models over IRT models is that they are typically non-parametric and do not 

require the assumptions needed with IRT-based methods and thus they are frequently 

able to detect DIF with smaller sample sizes. As a result, non-IRT methods are often 

utilized for identifying DIF. A large sample size typically refers to reference and focal 

group sizes that are approximately at least 250 to 500 individuals in each (Embretson & 

Riese, 2000). So while IRT-based methods are popular in the area of DIF detection, 

because the focus of this study is on small sample sizes, their use is not feasible.  



8 

 

Although the choice of DIF detection method is important, treatment and 

selection of the matching criteria are also important. The matching criterion is the 

variable used to equate members of both the reference and the focal groups to determine 

if there is a difference in performance on a particular item. Members of each group are 

paired by a common trait level. The trait is a proxy for the individual’s performance in 

the area being assessed. Typically this is the individual’s ability in the investigated area 

or total score on the test. Matching individuals on a common trait allows researchers to 

predict the outcome of one individual based on the performance of another. In essence 

matching permits DIF analysis to occur by enabling a relative comparison of the focal 

group to the reference group.   

Types of matching include thin and thick matching. Thin matching is the term 

used to describe association based on the total score. It requires each level of the 

matching criteria to be assigned a value (or weight) based on the frequency of the 

contingency table (Donoghue & Allen, 1993). For each of the matched ability levels, 

there is a contingency table of item responses. With dichotomous item responses, the 2 x 

2 contingency table is set up where group membership (focal or reference group) and 

item response (right or wrong) represent the two variables used to categorize item 

responses. Table 1 presents a 2 x 2 contingency table for each matched level. When the 2 

x 2 table has a frequency of zero in a row or column, the matching criteria is assigned a 

weight of zero. Because thin matching assigns each ability level a value based on the 

contingency table, those tables with zero frequencies are not used in the analysis and data 

are lost.  
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Thick matching is the result of combining total score levels. The process is not 

limited by the cell count of each level of the matching criteria. Instead levels are pooled 

to eliminate 2 x 2 tables with zero frequencies. Donoghue and Allen (1993) identified 

three methods of thick matching that yield results superior to thin matching including: 

combining extreme levels until each cell of the 2 x 2 table has a minimum of 1 

observation, combining levels until each cell of the 2 x 2 table has at least 1 observation 

per every level of the matching variable, and combining every two levels of the matching 

variable. Donoghue and Allen’s simulation study concluded that for short tests, 10 items 

or less, thick matching improved DIF detection when compared to thin matching. They 

concluded two methods of thick matching were superior to thin matching for short tests. 

One method required pooling the number of examinees to result in an equal number per 

matching level. The second was similar; it required pooling the members of the focal 

group until an equal number existed per matching level. With shorter tests (10 items or 

less), thin matching tended to result in inflated Type I error rates.  

 

Table 1 

 2 x 2 Contingency Table   

   

 Item Correct Item Incorrect 

Reference Group y X 

Focal Group y’
 

x’
 

 

Some researchers recommend a two-step purification process to increase 

detection rates for DIF items (Gierl et al., 2000). Purification is a process used to 

eliminate items containing DIF from the matching criteria. Miller and Oshima (1992) 
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found that detection of DIF items was not improved by purification when the proportion 

of DIF items was small, 10% or less. As the proportion of DIF items exceeded 10%, 

however, purification resulted in an increase of power and a reduction in Type I error. 

These results have been supported by the previous work of Holland and Thayer (1986) 

and more recently by Fildago, Mellenbergh, and Muñiz (2000). The two-step procedure 

used by Educational Testing Services (ETS) allows researchers to refine the matching 

criteria based on the effect size of DIF regardless of statistical significance (Gierl, Jodoin, 

& Ackerman, 2000). The first step involves including all items in the total score (the 

matching criterion). Secondly, DIF detection takes place for all items and those items that 

are identified as containing DIF have their item responses removed from the total score 

for matching. This final step results in a “pure” matching criterion. DIF detection is then 

done for each of the items previously flagged as having DIF. The matching criteria used 

for each test includes all of the non-DIF items plus the one DIF item under investigation 

(Donoghue, Holland, & Thayer, 1993; Holland & Thayer, 1986).  

DIF Detection Methods Based on Categorical Data Analysis 

The focus of this study is to examine the performance of three methods (all 

categorical data analysis based) for DIF detection under small sample size conditions: the 

Mantel-Haenszel test, Fisher’s exact test, and Logistic Regression. An individual 

description of each of these methods follows.  

Mantel-Haenszel. A common non-IRT method used today to identify DIF is the 

Mantel-Haenszel (MH; Mantel & Haenszel, 1959). Mantel and Haenszel (1959) proposed 

a simple estimator for the common odds ratio in a series of 2 x 2 tables. The MH 

compares the odds ratios of the focal and the reference groups. Here, the odds ratio is 

identified as the ratio of two odds (one from each of the groups), where each of the odds 
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is a fraction defined as the probability of success over the probability of failure. The 

common odds ratio is represented by αMH. This value can be transformed to any scale 

enabling it to be used in a plethora of ways. The MH is asymptotically distributed with 

degrees of freedom equal to 1 (Agresti, 2002).  

The MH procedure requires that the reference and focal groups are matched on 

total test score using every J test score (thin matching) or some thick matching criteria 

(where total scores are lumped into J number of groups). The matching results in J 

separate 2 x 2 tables (Gómez-Benito & Navas-Ara, 2000). In the context of DIF, it is a 

comparison of performance where the two groups are matched on total score or score 

categories. MH tests the null hypothesis that the odds of a correct response are the same 

in both groups. In other words, the odds of a correct response for the focal and reference 

group when matched on ability and no DIF is present should be the same. The resulting 

odds ratio would be one and the null hypothesis would not be rejected. When there is a 

significant difference in the probability of getting an item wrong across the matched 

groups, then DIF is present and the null hypothesis is rejected (Fischer, 1995). The 

hypothesis test for the Mantel-Haenszel has a chi-square distribution with df = 1. Once 

the odds of a correct response are calculated for both groups, the values are compared.  
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Table 2 

Tabular Representation of the Frequency Counts in the j-th 2 x 2  

Contingency Table j = 1, …, J)  

    

 Item Correct Item Incorrect  Row Total 

Reference Group yj xj mj 

Focal Group yj’ xj’ mj‘ 

Column Total nj nj’ Nj 

 

 

The MH test statistic and variance have the following form:  
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where yj, xj, yj’,  and xj’ are the frequency counts of the (1, 1), (1, 2), (2,1), and (2, 2)  

elements, respectively,  in each of the j-th 2 x 2 contingency table and  Nj is the total 

count of all cells for each J category (see Table 2). The variance, Var, is the product of 

row and column totals, divided by the product of the total count of all cells squared and 

the total cell count minus one, for each J category (see Table 2). Equation 1 provides a 
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test for association between the two binary variables of interest. A sample calculation 

using 2

MHX  is demonstrated in the Appendix. 

Exact Test. Fisher developed the exact test (ET) in 1934 (Agresti, 1996) to test the 

hypothesis of the conditional independence between the reference and focal group using 

the 2 x 2 x J contingency table (see Table 2). The tested hypothesis states that the odds 

ratio will equal one when there is no difference between the two groups. Because its 

probabilities are not based on approximating values, the results are believed to be 

superior to tests that use approximations like MH (Agresti, 1996). When sample sizes are 

small (100 or less in each group), the accuracy of approximations decreases, giving the 

exact test a possible advantage (Hambleton et. al., 1993).  

Fisher’s exact test probabilities are based on a hypergeometric distribution. A 

hypergeometric distribution, is one in which the number of successes in a sequence of 

selections from a finite population without replacement can be described by a discrete 

probability distribution. In a hypergeometric distribution the cell count probabilities of all 

cells are determined by the count of the yj cell, element (1, 1) (see Table 2). The 

probability of yj is defined by the following equation (Agresti, 1996), 
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where yj corresponds to the probability of a correct response by the focal group, mj is the 

number of correct responses for both groups (row 1 total), mj
’
 is the number of incorrect 

responses by both groups (row 2 total), nj  represents the total items taken by the focal 

group (column 1 total), and Nj is the total number of items (see Table 1). Equation 3 

presents the probability of a specific value, yj, when the odds ratio is equal to one. It may 

be rewritten as a factorial (Equation 4). A sample calculation using the hypergeometric 

distribution is demonstrated in the Appendix. 

An item is identified as having DIF when the odds ratio calculated by the 

hypergeometric distribution (Equation 3) exceeds one. When there is no DIF, the odds 

ratio is equal to one. This means that the probability of a correct response is independent 

of group membership. It then follows that evidence against the null hypothesis of 

independence is strengthened as the probability of the odds ratio strays from one. When 

the experimental value of the odds ratio and one are significantly different, the null 

hypothesis is rejected. 

 Logistic Regression. A third method for DIF detection is logistic regression. One 

advantage of the logistic regression model is that it can be used in identifying uniform 

and non-uniform DIF (Swaminathan & Rogers, 1990). Zumbo (1999) demonstrated how 

to classify a DIF item as uniform or non-uniform. If the probability of a correct response 
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is the same across all ability levels and the item has been flagged as having DIF, it is 

classified as having uniform DIF. If, however, there is an interaction between group 

membership and ability level, then it is called non-uniform DIF.  

The following equation is used when testing simultaneously for uniform and non-

uniform DIF for an item:  

 

0 1 2 3 *Y b bTOT b GROUP b TOT GROUP= + + +
                   (5) 

where Y is the function of the linear combination of the predictor variables, TOT 

represents the total score or created total score using thick matching for each individual, 

GROUP refers to group membership (reference or focal), and TOT*GROUP is the 

interaction between group and total score. Y can also be described as the dependent 

variable which is equal to the natural log of the probability of a correct response, p, 

divided by the probability of an incorrect response, 1 - p (Equation 6). DIF detection with 
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regard to LR is the result of evaluating the contribution of each model term (TOT, 

GROUP, and TOT*GROUP) successively to test for improvement of fit. Uniform DIF is 

present when GROUP is statistically significant and TOT*GROUP is not and non-

uniform DIF is present when the interaction term is statistically significant regardless of 

the significance of the GROUP term (Hidalgo & Lopez-Pina, 2004). This process allows 

for the identification of uniform and non-uniform DIF simultaneously.  
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Factors Influencing DIF Detection 

Item discrimination. Differences in an item’s ability to discriminate have been 

shown to impact the power to detect DIF. Chang, Mazzeo, and Roussos (1996) conducted 

a simulation study to examine the impact of variation in the discriminating parameter 

when comparing the performance of MH, SIBTEST (Simultaneous Item Bias Test), and 

SMD (standard mean difference) in detecting items embedded with DIF using the 3 

parameter logistic model. The ability of the focal group was sampled from N(-1, 1) while 

that of the reference group was sampled from N(0, 1). The discrimination parameter 

value ranged from .15 to 2.0 and included 11 different values. Both the reference and 

focal group included three different sample size values (500, 1000, and 2000). This study 

found that as sample size increased, power increased for all three procedures. For items 

that were more discriminating, the increase was more pronounced. Specifically, power 

increased from .131 to 1.00 for MH, from .138 to 1.00 for the SIBTEST, and from .136 to 

.985 for SMD as the item discriminating parameter increased. Their simulation presented 

a relationship between DIF detection method, discriminating parameter, and sample size.  

Kristjansson, Aylesworth, McDowell, and Zumbo (2005) used a simulation study 

to compare four methods in their DIF identification rates for items with polytomous 

responses. Their study supports the findings of Chang, Mazzeo, and Roussos (1996). The 

four methods used in the investigation were the Mantel, generalized Mantel-Haenszel 

(GMH), logistic discriminant function analysis (LDFA), and unconstrained cumulative 

logits ordinal logistic regression (UCLOLR). A primary goal of the study was to identify 

the influence the item discrimination parameter had on power and Type I error rates when 

evaluating uniform DIF. Three items were classified by their corresponding item 

discrimination value using the following criteria: the item with a value of 0.8 was 
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categorized as low, the item with a value equal to 1.2 was categorized as moderate, and 

the item with a discrimination value of 1.6 was labeled high. Their results identified a 

relationship between power and item discrimination when evaluating uniform DIF. As 

item discrimination increased from low to high, power increased as well. The Mantel’s 

power went from 98.3% to 100%, GMH increased from 95.1% to 99.9%, LDFA 

increased from 97.0% to 100%, and UCLOLR went from 90.0% to 99.9%. 

 Sample size, DIF magnitude, and item difficulty. Using a simulation study, Mazor, 

Clauser, and Hambleton (1992) identified three characteristics which were associated 

with MH’s power to detect DIF: (1) sample size, (2) DIF magnitude, and (3) item 

difficulty. They used a three parameter logistic model to generate a pool of three datasets 

of 2000 examinees per replication. The first two datasets represented the reference and 

the focal group (focal group 1). Both groups had a mean ability distribution of zero. The 

third set, representing focal group 2, had a mean ability distribution of -1.0. A test with 

75 items was generated with 16 items containing DIF was used in the simulation. Four 

datasets were randomly generated from the sample of 2000. This resulted in the following 

five sample sizes: 100, 200, 500, 1000, and 2000. Four levels of DIF were added to the 

focal group, 0.25, 0.50, 1.00, and 1.50, making the item more difficult for the focal 

group. As the sample size decreased, MH’s ability to correctly identify DIF items also 

decreased. When the focal group size was 2000, focal group 1 had a mean detection rate 

of 74% across all conditions while focal group 2 had a mean DIF detection rate of 64%. 

DIF detection rates decreased when sample size decreased. Also, MH had higher power 

when the ability of the two groups did not differ. This was consistent across all sample 

sizes and conditions except one. MH was more likely to correctly identify DIF items 
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when there was an ability difference between the two groups and the item was classified 

as easy.  

 The impact of sample size and item characteristics on MH’s ability to correctly 

identify DIF items was further studied by Roussos and Stouts (1996). Their study 

compared the MH procedure to SIBTEST under small and large sample size conditions 

involving two simulation studies. The first study examined conditions with small to 

moderate sample sizes. The focal and reference groups had equal sizes of 100, 200, 500, 

and 1000. The mean differences in ability between the reference and focal groups were, 

0.0, 0.5, and 1.0. When the size of each group was 1000 and the ability difference 

between them was 1.0, the mean Type I error rate for MH was 6% and decreased to 2.3% 

when there was no difference in ability and sample size was 100. The results of SIBTEST 

were similar under the same conditions. 

The second study (an examination of Type I error) increased the number of non-

DIF items and focused on moderate to large sample sizes: 500, 1000, and 2000 per group. 

Focal and reference group sizes were once again set equal to each other. The focus of this 

simulation was to identify the rate at which each procedure falsely characterized items as 

having moderate to high DIF. The DIF items were pre-identified as having moderate or 

high DIF. When the difference in ability between the two groups was 1.0 and sample size 

was 500, MH falsely categorized items as moderate or high at a rate of 9% compared to 

7% when sample size increased to 3000. Sample size affected SIBTEST’s power as well. 

These findings support the research comparing MH and SIBTEST in simulation research 

(Shealy & Stout, 1993; Holland & Thayer, 1988). It is insufficient to explore the impact 
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of small sample size on the effectiveness of DIF detection methods without recognizing 

the impact of the item parameters.   

Comparison of DIF Detection Methods 

Mantel-Haenszel versus the exact test. Until fairly recently, the exact test was 

rarely used in applied statistical research because it requires a large amount of 

computation. With recent advances in software capability, the exact test has become 

feasible for researchers to utilize. Its use, however, is still relatively uncommon among 

researchers in detecting DIF. To date, only two studies have compared the performance 

of the exact test with MH. Parshall and Miller (1995) examined the relative performance 

of the exact test against the MH test using dichotomous items in a simulation study, while 

Meyer, Huynh, and Seaman (2004) compared the performance of both methods when 

using polytomous items with a real dataset. No published research has yet compared the 

exact test and logistic regression.  

Parshall and Miller’s (1995) simulation was comprised of three studies. The first 

study consisted of a 25 item test with parameters generated according to the three-

parameter IRT model, with only a single DIF item. The a and c parameters were 

generated from the log-normal distribution (0, 0.5) and a beta distribution, respectively. 

The b parameters were generated from the normal N(0, 0.75). Three levels of DIF 

magnitude were added to the generating parameters for the focal group: 0.25, 0.50, and 

0.75; thus making the item more difficult for the focal group. A sample size of 500 was 

used for the reference group and sample sizes of 25, 50, 100, and 200 were used for the 

focal group. Both groups employed a normal ability distribution. No substantial 

differences in power were discovered between the ET and MH in the detection of DIF. 
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DIF items were detected 88% of the time by the Exact Test and 90% of the time when 

MH was utilized (using alpha of 0.05) when the sample size was 100 or greater and the 

DIF magnitude was 0.75. When the alpha level was more conservative, 0.01, a sample 

size of 200 was required to have a rejection rate of 87% for both methods. The exact test 

tended to be slightly more conservative than the MH test with the Type I error rates, 

while the MH was closer to the nominal alpha level.  

In the second simulation study from Parshall and Miller (1995), the focal and 

reference groups’ abilities were generated from different distributions. The focal group’s 

ability distribution was one standard deviation below the reference group’s ability 

distribution, thus creating a difference in ability also known as impact. Beyond this 

change, the conditions were consistent with those of the first study. The presence of 

impact negatively affected power for both methods. A focal group size of 200 and DIF 

magnitude of 0.75 was required to produce a rejection rate of only 29% for the ET and 

36% for MH when alpha was 0.05. The rejection rate decreased as the alpha level became 

more conservative, 0.01, under the same conditions listed. The exact test’s rate decreased 

to 15% while MH’s was 16%. Again, the differences in DIF detection between the exact 

test and MH procedures were not substantial, and when differences emerged they tended 

to slightly favor the MH method.  

The third study used data generated from parameters derived from an 

administration of the 40-item ACT Assessment Mathematics test. The parameters were 

estimated separately for a sample of 2,000 White examinees and a sample of 2,000 

African American examinees. The estimates were then placed on the same scale using a 

set of linear transformations. The scaled estimates served as the item parameters from 
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which the data were generated. As in the first study, both the reference and focal groups 

were generated under a normal distribution. The sample sizes were the same as those 

from the first study. However, in the third study, no DIF was added. Using alpha levels of 

both 0.01 and 0.05, the Type I error rates for both methods were found to be similar, with 

a slight conservative tendency for the exact method. Again, the main finding was that the 

exact test offered no particular advantage over the MH test when the focal group sample 

size was small.  

Meyer et al. (2004) contributed to the comparison of the performance of MH with 

the exact test in an applied scenario. They investigated two areas not addressed by 

Parshall and Miller: the use of polytomous items and the use of effect sizes with real data. 

Their study included 375 participants. Typically with DIF detection, females are 

considered the focal group, but in this study they were in the majority (n= 299). So the 

researchers decided to make the men the focal group (n = 76). The researchers employed 

Donoghue and Allen’s (1993) thick matching procedure. The survey was made up of 30 

Likert scale items, of which 10% of the items were classified as containing DIF. Their 

study findings regarding statistical significance were similar to that of Parshall and Miller 

(1995). Both found the MH to detect DIF slightly more frequently than the exact test in 

identifying the target item. However, effect size calculations resulted in a similar number 

of items classified as containing large DIF based on NAEP classifications.  

MH versus logistic regression. Hildalgo and López-Pina (2004) compared MH 

and logistic regression for the identification of DIF. In this simulation study, both the 

focal and reference groups had a sample size of 1000. The study used the two-parameter 

logistic (2PL) as the generating model. A total of 25 conditions were run using a 75 item 
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test. In the test, 16 items contained DIF. Each DIF item had a unique magnitude 

(resulting in a total of 16 x 25 = 400 different DIF items). The 400 items containing DIF 

were created using the following factors: five levels of the b parameter (-1.5, -1.0, 0, 1.0, 

and 1.5), four levels of the a parameter (0.25, 0.60, 0.90, and1.25), four levels of change 

in the b parameter (0, 0.30, 0.60, and 1.00), and five levels of change in the a parameter 

(0, 0.25, 0.50, 0.75, and 1.00). In each condition, MH and LR were used to detect DIF. 

Across all conditions with uniform DIF, MH correctly identified DIF items at a rate of 

55%, while logistic regression had a detection rate of 53.33%. In the non-uniform DIF 

conditions, the strength of each procedure’s findings was reversed. Logistic regression’s 

non-uniform DIF detection rate of 68.75% across conditions was more powerful than 

MH’s rate of 61.25%. For both procedures the detection rate increased as the items 

became more difficult and more discriminating. This was exemplified by large 

differences in the a and b parameters. When the change in the a parameters was 0.5 or 

greater and the change in the b parameters was 0.6 or greater, the overall detection rate 

was 99%. This is an increase from 35% for the remaining conditions.  

Swaminathan and Rogers (1990) also compared MH with LR in the detection of 

DIF. In their simulation study the following factors were manipulated: sample size per 

group (250 and 500), test length (40, 60, and 80 items), type of DIF (uniform or non-

uniform), and the magnitude of DIF for both uniform and non-uniform conditions (0.6 

and 0.8). In each of the conditions, 20% of the items were identified as having DIF. There 

were equal numbers of uniform and non-uniform DIF items. When the sample size was 

500, both methods effectively identified uniform DIF with 100% accuracy. This rate 

dropped to 75% for both procedures when the sample size decreased to 250 per group. 
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Non-uniform DIF detection was influenced by both sample size and test length. Logistic 

regression had a DIF detection rate of 50% when the test had 40 items regardless of 

sample size. The non-uniform DIF detection rate increased to 75% when the test length 

doubled and the per group sample size was 500. LR’s performance improved as the 

sample size of the group increased and test length doubled. MH had a detection rate of 

0% for non-uniform DIF across all conditions. Demonstrating its’ weakness in detecting 

non-uniform DIF. While the two methods performed similarly with uniform DIF, LR had 

the distinct advantage of also being able to detect non-uniform DIF.  

Summary of DIF detection methods. Each of the three methods discussed above 

possess strengths and weakness which encourage a comparative study of their 

effectiveness to detect DIF items when sample sizes are small, particularly with a small 

focal group size. MH is the most commonly used of the three (Meyer, Huynh, & Seaman, 

2004) and has been shown to be effective in detecting uniform DIF (Swaminathan & 

Rogers, 1990). Because it is an asymptotic approach, however, small sample sizes may 

pose a problem. As the number of examinees in a particular score group decreases, the 

likelihood of an empty cell in a 2 x 2 table increases. Effective calculation of the odds 

ratio is hindered by having cell counts of 0. LR boasts several advantages over MH 

including the ability to include a variety of independent variables into the model equation 

to predict an examinee’s performance (Kelderman & Macready, 1990) as well as the 

ability to detect non-uniform DIF. Its performance has not yet been evaluated for DIF 

detection with small sample sizes. 

The exact test differs from the previous two in that it does not rely on 

approximations. As a result, it is not inhibited by small sample sizes to derive an accurate 



24 

 

calculation. Small sample sizes of the focal and reference group and short test length are 

not expected to negatively impact its power (Agresti, 1996). However, its strength, non-

reliance on approximations, has in the past been its greatest weakness. ET uses software 

that is not as accessible as those for MH and LR. The exact test has been used in the past 

when the sample sizes were too small for the approximations used by other procedures 

(Agresti, 1996). 

Practical Significance 

Measures of effect size are central in identifying the efficiency of a technique in 

detecting DIF that is of practical significance. When sample sizes are small, detecting an 

effect using statistical significance is typically more difficult. Practical significance 

supplies information that enhances statistical significance values by providing a measure 

of meaningfulness. Effect size measurements yield categories based on the strength of the 

DIF detected in an item. Items flagged as having DIF are typically divided into three 

categories: negligible, moderate, and large DIF. Effect size measures used for 

dichotomous data are based on a logarithmic transformation of the odds ratio (Holland & 

Thayer, 1988). This is true for those procedures producing an odds ratio value. The result 

is a value that has a symmetrical scale: 0 indicates the absence of DIF, while a negative 

value signifies that the item favors the focal group, and a positive value indicates 

favoritism towards the reference group. The magnitude of the transformed odds ratio 

yields the strength of the DIF item, its practical significance. This is the criterion 

preferred by ETS and used by National Assessment of Educational Progress (NAEP) to 

categorize DIF items (Meyer et al., 2004).  

The MH common odds ratio, αMH, may be transformed to a delta scale,          

MH D-DIF (Dorans & Holland, 1993). This process utilizes the following equation:  
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MH D - DIF = -2.35 ln [αMH]     (7) 

 

An item is categorized as favoring the focal group when the MH D - DIF value is positive 

and favoring the reference group when the value is negative. Using statistical significance 

and the magnitude of the MH D - DIF value, the Educational Testing Service classifies 

DIF into three categories: type A, negligible DIF, |MH D - DIF| < 1; type C, large DIF, 

|MH D - DIF| > 1.5; type B, intermediate DIF, 1 ≤ |MH D - DIF| > 1.5. In order to be 

classified into categories B or C, the item must be statistically significant as well.  

A similar procedure can be employed in assessing the magnitude of uniform DIF 

with logistic regression. Calculation of the effect size with uniform DIF is a two step 

process. Zumbo (1999) outlines this method utilizing R
2
. The proportion of explained 

variation, R
2
, is compared between two models. R 2

1  is initially calculated by entering total 

score, b1TOT, (Equation 8). R 2

2  is then calculated with the addition of group membership, 

b2GROUP, (Equation 9). The difference between the two R
2 

values, ∆R
2
, is the variance 

explained by group membership.  

 

Y = bo + b1 TOT       (8) 

Y = bo + b1TOT + b2GROUP             (9)  

 

The following guidelines were used by Zumbo (1999) to categorize DIF items: type A, 

negligible DIF, ∆R
2
 < .13; type C, large DIF, ∆R

2
 > .26; type B, intermediate DIF, .13 < 

∆R
2
 < .26. Categories B and C require statistical significance as well.  
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Purpose 

Parshall and Miller’s (1995) study was significant as the first simulation 

comparing the performance of MH and the exact test in DIF detection with small focal 

group sample sizes. The purpose of this simulation study was to expand on Parshall and 

Miller’s (1995) research in order to augment knowledge about strengths and limitations 

in DIF identification under small sample size conditions. Several of these areas of 

expansion include additional focal group sample sizes, smaller reference group sample 

size, increasing the magnitude and number of DIF items, including a comparison of MH 

and the ET with logistic regression, and using measures of practical significance along 

with statistical significance to detect DIF.  

In Parshall and Miller’s (1995) study, a reference group sample size of 500 was 

used with focal group sizes in the amounts of 25, 50, 100, and 200. As discussed 

previously, there are a number of scenarios where small sample sizes in the focal and 

reference group may occur in testing. It is important to understand how DIF detection 

methods work under very small sample sizes and where methods’ identification of DIF 

breaks down. Thus in this study a variety of additional small sample sizes will be 

included for the focal group. In addition to examining other sample sizes, the interaction 

between small sample size and the amount of DIF may be significant. In Parshall and 

Miller’s (1995) study only one DIF item was included whereas in actual testing scenarios 

it is likely that more DIF items would be present. Therefore this study included additional 

DIF conditions incorporating different magnitudes of DIF. In addition, previous research 

has found that logistic regression performed as effectively as MH in detecting DIF. This 

examination of its performance when the sample size is small was compared in this 
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study. Measures of practical significance in this area have also not been examined in 

simulation research. Therefore to determine the sensitivity of each procedure to small 

sample sizes, measures of practical significance along with statistical significance were 

examined.  

 

 



28 

CHAPTER 3 

METHOD 

 

A Monte Carlo simulation study was conducted to assess the comparative 

performance of three DIF detection methods: MH, the exact test, and logistic regression, 

under small sample size conditions using a 10-item test. The results of short tests are 

often used in decision making, despite possible validity concerns (Emons, Sijtsma, & 

Meijer, 2007). DIF detection rates were examined based on statistical significance alone 

as well as the use of statistical significance and a measure of practical significance. 

Several conditions were varied, including the focal group sample size, the DIF 

magnitude, and the percent of items with DIF. For each condition, the DIF detection rates 

of the MH, ET, and LR were compared. 

Focal group sample size. The first design factor varied in this study was the focal 

group sample size. Embretson and Riese (2000) described small focal group size as 

having less than 250 individuals in the group. Because this study focused on the 

effectiveness of DIF detection with small sample sizes, the reference group size was set 

at 200. The focal group sizes consisted of 5, 10, 20, 40, 60, 80, and 100 examinees. The 

initial focal group size was large enough to ensure that all three methods could be 

calculated and small enough to be categorized as a small sample size (Parshall & Miller, 

1995). 

DIF magnitude. The second factor manipulated was the magnitude of the DIF. 

Parshall and Miller incorporated three levels of DIF magnitude in their simulation study: 
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0.25, 0.50, and 0.75. Both Hidalgo and López-Pina (2004) and Fidalgo, Ferreres, and 

Muñiz (2004) included 1.0 as the largest magnitude of DIF in their examination of small 

sample sizes. As a result, four levels of DIF were employed in this study: 0.25, 0.50, 

0.75, and 1.00, to represent small-to-large DIF magnitudes.  

Percentage of items with DIF. The third factor varied was the percent of items 

containing DIF. Three levels of DIF amount were used in this study: 10%, 20%, and 

30%. Augmenting the number of DIF items allowed for an investigation of the 

relationship between small sample size and concentration of DIF items. The conditions of 

this study design are listed in Table 3.  
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Table 3 

 Study Design 

             

 

DIF Detection Methods Compared 

1. Mantel-Haenszel 

2. Exact Test 

3. Logistic Regression 

 

Focal Group Sample Size 

1. 5 

2. 10 

3. 20 

4. 40 

5. 60 

6. 80 

7. 100 

 

DIF Magnitude 

1. 0.25 

2. 0.50 

3. 0.75 

4. 1.00 

 

Percentage of Items with DIF 

1. 10% 

2. 20% 

3. 30% 

             

 

 

By expanding on Parshall and Miller’s (1995) work, the following factors were 

examined in this study: seven levels of focal group sample size (5, 10, 20, 40, 60, 80, and 

100), four levels of DIF magnitude (0.25, 0.50, 0.75, and 1.00), and three levels of 

percentage of DIF items included (10%, 20%, and 30%). These levels were fully crossed 

resulting in 84 conditions. The 2PL IRT model was used in this study incorporating both 

item discrimination (a) and item difficulty (b) parameters.  
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Data Generation 

 

The S-plus code by Douglas (personal communication, 2003) was adapted to 

generate a and b parameters for each of the 10 items on the simulated test. The 

distributions used by Parshall and Miller (1995) to generate item parameters were 

replicated in this study. The a parameters were generated by using a log-normal 

distribution (0, 0.5). A normal distribution (0, 0.75) was used to generate the b 

parameters. Four levels of uniform DIF (0.25, 0.50, 0.75, and 1.00) were added to the 

focal group’s b parameter for each designated DIF item. The remaining items in the two 

groups had the same b parameter values. In conditions where 10% of the items contained 

DIF, DIF was added to the first item in the test. With 20% of the items containing DIF, 

DIF was added to the first two items and to the first three items when 30% of the items 

contained DIF. Table 4 includes the generated a and b parameters for all ten items. Table 

5 lists the changes in the b parameter for the three items induced with DIF. 

 

Table 4 

Generated Item Parameters 

Item a Parameter b Parameter 

 

1 

 

0.6115882 

 

0.6520854 

2 0.8894247 0.2586809 

3 1.8544249 -0.2287187 

4 0.3323106 0.1594453 

5 0.5104524 0.2929465 

6 1.7806141 0.4019744 

7 0.3680925 -0.2654112 

8 1.4723857 0.7996554 

9 0.5198635 -0.3064966 

10 0.3080919 -0.8650780 
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Table 5 

DIF Magnitude Values 

 

 

30% of DIF Items 

 

20% of DIF Items 

 

 

DIF Magnitude 

 

10% of DIF Items 

 

Item 1 

 

 

Item 2 

 

 

Item 3 

 

.25 

 

.9020854 

 

.5086809 

 

.0212813 

.50 1.1520854 .7586809 .2712813 

.75 1.4020854 1.0086809 .5212813 

1.00 1.6520854 1.2586809 .7712813 

 

 

IRTGEN (Whittaker, Fitzpatrick, Dodd, & Williams, 2003), a SAS/IML program, 

was used to generate the theta values using a normal distribution (0,1) and item responses 

for each simulee in the focal and reference groups based on the previously generated 

parameters. This process was first accomplished by randomly assigning each examinee a 

known theta value (θ) from a normal distribution. Secondly, the item parameters and 

theta values were combined to create a response score based on the 2PL IRT model using 

the following equation 

 

   Pi(θ) = 
)(

)(

1 ii

ii

bDa

bDa

e

e
−Θ

−Θ

+
  i = 1, 2, …, n    (10) 
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where ai is the discrimination parameter and bi is the difficulty parameter for item i. D 

represents a scaling constant which is equal to 1.7. This process was repeated for 200 

replications in each condition.  

DIF Detection 

StatXact (Mehta & Patel, 2001) is a statistical software program distributed by 

Cytel that permits users to formulate exact inferences based on algorithms as opposed to 

large scale assumptions. StatXact PROCs enables SAS users to access StatXact while 

working in SAS. This study used StatXact PROCs to examine the exact test.  

For each replication, the exact test, MH, and logistic regression were used to 

detect DIF in each DIF item. Results were examined in terms of power, calculated as the 

proportion of times a DIF detection method correctly identified an item as displaying DIF 

using statistical significance, and then using statistical significance along with measures 

of practical significance. The logistic regression model used had two predictors and 

therefore only uniform DIF was calculated. The p-value associated with uniform DIF was 

used to compute statistical significance. A description of their implementation follows. 

The α level used in this study was 0.05. Power was calculated for each item embedded 

with DIF.  

Power based on use of statistical significance along with practical significance 

was calculated using two steps. First effect sizes were calculated for each method of DIF 

detection. Both MH and the exact test used the criteria employed by ETS. The MH D-

DIF value calculated using Equation 7. Second, the calculated value was categorized as 

follows: type A, negligible DIF, |MH D - DIF| < 1; type C, large DIF, |MH D - DIF| > 

1.5; type B, intermediate DIF, 1 ≤ |MH D - DIF| < 1.5. Effect sizes for logistic regression 
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were determined by employing the method recommended by Thomas and Zumbo (1998), 

which requires the calculation of R
2
. Once calculated, the items were classified as 

follows: type A, negligible DIF, ∆R
2
 < .13; type C, large DIF, ∆R

2
 > .26; type B, 

intermediate DIF, .13 < ∆R
2
 < .26. For both methods of effect size calculation, items 

categorized as type B or type C had to display statistical significance. For each condition 

and each method, items falling into categories A, B or C were tallied and divided by the 

number of replications to determine the power rates when statistical and practical 

significance were used together. Category A also included items that did not have 

statistical significance. 
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CHAPTER 4 

RESULTS 

A total of 84 unique conditions were used in this simulation study to make 

comparisons between each of the three DIF detection methods. In each condition, 200 

replications were used, resulting in a total of 16,800 simulated data sets. Table 3 presents 

the study conditions, Table 4 lists the parameters of the test items, and Table 5 lists the 

DIF magnitude values used in the present study. These three tables collectively aid in 

understanding the factors examined in this study. 

Data Analysis 

Tables 7–12 present power in two different ways for each DIF item and study 

condition. First, power was assessed solely by statistical significance and second by 

statistical significance along with the presence of an intermediate or large effect size. In 

each table, power using statistical significance is compared to power using statistical 

significance along with effect sizes for each DIF detection method. To better understand 

the differences in magnitude of effect size among the three procedures, Tables 13–18 

present the percent of items across replications that were in each of the three effect size 

categories for each study condition. 

A proportion of MH items that demonstrated statistical significance resulted in an 

unattainable MH-DIF. Items with statistical significance which had an unattainable MH 

D-DIF value were not categorized. These items belonged to conditions that included the 

smallest sample sizes 5, 10 and less often 20. Complications arose in the calculation of 
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the effect sizes for the MH procedure when the focal group sizes were extremely small, 

20 and below. The MH D-DIF value used to calculate effect size, see Equation 7, is based 

on a calculated αMH value. When the focal group sample sizes were below 20, the 

likelihood that one or more cells in the 2x2 table may be empty increased. When this 

occurred, and a column and or row sum was zero the computation of the necessary αMH 

value was inhibited. Although a p-value was assigned and was always 0.000, an effect 

size measure could not be determined because of computation limitations. Table 19 

presents the proportion of statistically significant items that had unattainable effect sizes 

that could not be calculated.   

This did not occur for the exact test or logistic regression. Of the simulated 

conditions with 10% of the items embedded with DIF, an average of 88% of the DIF item 

across conditions had an unattainable MH-DIF value when the focal group size was five 

across all DIF magnitude variations. This value decreased to 22% when the focal group 

size increased to 10. The largest focal group size to exhibit an unattainable MH-DIF 

value was 20, with a mean of 2%.  

As the number of items embedded with DIF increased, the trend was replicated. 

The simulated condition with two items induced with DIF presented similar results for 

items one and two. When the focal group size was five, item one had a mean rate of 80% 

while item two’s rate was 84%. Both items demonstrated a substantial decrease as sample 

size increased to 10. Under these conditions item one had a rate of 15% and item two had 

a rate of 17%. Item one was the only item unable to calculate a MH-DIF value when the 

sample size increased to 20. This occurred 4% of the time when the DIF magnitude was 

0.50. As the number of DIF items increased from 20% to 30%, item one and two were 
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similar while item three followed the trend but had lower rates of MH-DIF values. For 

the focal group size of 5, items one and two had similar values, 75% and 74%, 

respectively. This was in contrast to 57% for item three. When the focal group size 

increased to 10, all items demonstrated a decrease in their inability to calculate the MH-

DIF value. Item one’s rate was 35%, item two’s was 39% and item three’s was 12%. 

Only item two and three were unable to calculate the value when the focal group sample 

size increased to 20. This occurred when the DIF magnitude was 1.00 at a rate of 2% for 

both items.  

Item Discrimination and Item Difficulty 

 The item discrimination parameter, a, impacted the detection power for each of 

the three methods studied (see Table 6). The three items embedded with DIF had a 

different item discrimination value. Item one’s value was 0.612, item two’s was 0.889, 

and item three’s value was 1.854 (see Table 4). Recall from Chapter 2, Kristjansson, 

Aylesworth, McDowell, and Zumbo (2005) defined an item discrimination parameter as 

low if its value was 0.8 or less, high if its value was at least 1.6, those values in between 

were labeled moderate. The value associated with the first item is defined as a low 

discrimination, item two’s value is defined as moderate while item three’s value is 

defined as high (Kristjansson, et al., 2005). In this study a relationship existed between 

power, item discrimination and sample size. The impact of a highly discriminating item 

(item 3) was greater when sample sizes were above 20. For sample sizes less than or 

equal to 20, item discrimination was not as influential (since power was always very 

low). This pattern was evident regardless of DIF detection method. The largest average 

increase in power was visible between item one   (a = 0.612) and item three (a = 1.854) 
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when the focal group sizes were above 20. Under these conditions MH had a rate of 

24.1% for item one compared to 63.9% for item three, the ET’s rate was 22.1% compared 

to 61.9%, and LR’s rate was 22.8% and 63.3%, respectively.  

 

Table 6 

Mean Power Rates Across Conditions for Each Method by Percent of Items Induced with 

DIF 

 

Condition 

 

Item 1 

 

Item 2 

 

Item 3 

10% of DIF Items    

MH 17.6   

ET 15.3   

LR 19.6   

20% of DIF Items    

MH 16.6 27.6  

ET 14.3 24.9  

LR 18.8 29.1  

30% of DIF Items    

MH 17.5 26.8 45.4 

ET 15.4 23.9 42.6 

LR 19.7 28.3 45.1 

 

Comparison Based on 10% of Items Containing DIF 

Table 7 contains the results for the simulated conditions with 10% of the items 

embedded with DIF. As expected, an increase in the magnitude of DIF resulted in 

amplified power for all three procedures. To a lesser extent, increasing sample size 

increased power within each designated magnitude of DIF. As the magnitude of the DIF 

item increased, the impact of sample size on power also increased. The positive 

relationship between DIF magnitude and power, and sample size and power was 

exhibited by all three procedures, although the strength of the relationship varied. On 
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average across all conditions, LR had the highest DIF detection rate of 19.6%, MH was 

next with a rate of 17.6%, and ET was last with a rate of 15.3%. For all three methods 

overall, however, power was poor. Under the most favorable condition, focal group size 

of 100 and DIF magnitude of 1.00, power was still below the acceptable rate of 80% for 

all three procedures. 
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Table 7 

10% of Items with DIF: Item One 

Power and Power with Effect Sizes by Focal Group Size and DIF Magnitude (Percent) 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with 

ES 

 

Power 

 

Power 

with ES 

 

.25 

 

5 

 

2 

 

1 

 

2 

 

2 

 

4 

 

4 

 10 6 6 2 2 9 8 

 20 6 6 6 6 8 8 

 40 7 7 5 5 6 3 

 60 6 6 5 5 7 7 

 80 5 5 5 5 6 5 

 100 6 6 5 5 5 4 

.50 5 2 0 2 2 7 6 

 10 9 8 7 7 9 7 

 20 8 8 6 6 9 6 

 40 14 14 9 9 16 14 

 60 18 18 16 16 18 15 

 80 18 18 16 16 21 19 

 100 22 22 20 20 24 20 

.75 5 7 1 3 3 11 10 

 10 10 7 7 7 13 9 

 20 12 12 9 9 13 10 

 40 22 22 21 21 26 21 

 60 28 28 27 27 30 25 

 80 30 30 25 25 34 30 

 100 34 34 32 32 32 27 

1.00 5 6 1 4 4 19 15 

 10 15 10 10 10 18 17 

 20 21 20 18 18 22 17 

 40 33 33 27 27 33 31 

 60 38 38 37 37 39 33 

 80 54 54 49 49 52 42 

 100 55 55 53 53 57 45 

        Note. ES refers to effect size 
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When the focal group sample size was five, LR displayed the highest average 

power with a rate of 10.3%, MH was next with a rate of 4.3% and ET was last with a rate 

of 2.8% across all DIF magnitudes. Regardless of the magnitude of DIF, logistic 

regression’s mean detection rate was 2.4 times as powerful as MH’s and 3.7 times as 

powerful as the exact test’s when the sample size was five. Increasing the sample size 

resulted in a general increase of power and robustness for all three techniques as 

expected. For the most extreme sample size conditions (focal group size less than or 

equal to 20) logistic regression exhibited the highest power followed by MH. The average 

power of logistic regression under these conditions was 11.8%, MH’s value was 8.7% 

and the exact test had an average of 6.3%. Although sample size had an impact, the 

greatest differences were observed as a result of variation in DIF magnitude. 

The average power of LR increased by 12% as the DIF magnitude changed from 

0.50 to 0.75, and the sample size remained at five. When DIF was weak (0.25), MH 

exhibited power of 5.4% while ET’s mean detection rate was 4.3%. As DIF magnitude 

increased, however, the difference between MH and the exact test increased. The mean 

detection rate increased to 20.4% for MH and 17.7% for the exact test when the DIF 

magnitude was increased to 0.75. Logistic regression’s mean detection rate across all 

sample size conditions increased to 23.9% when (bR – bF  = -0.75) from 6.4% when (bR – 

bF  = -0.25). In conditions with the highest magnitude of DIF (bR – bF  = -1.00) and focal 

group size of 100 the three procedures performed similarly with values ranging from 53% 

to 57%. While LR demonstrated the highest DIF detection rates overall, MH and the 

exact test performed similar to one another. Overall, sensitivity of the logistic regression 

procedure to changes in the magnitude of DIF and sample size resulted in a slightly better 
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performance when compared to MH and the exact test, although power in most 

conditions was still very low. 

When effect sizes were taken into account, regardless of DIF magnitude, MH’s 

performance resulted in slightly greater practical significance than both the exact test and 

logistic regression when the focal group size exceeded 20. The average power when 

including only with moderate to large effect sizes when sample sizes were above 20, 

across all magnitudes of DIF, was 24.4% for MH followed by 22.0% for the ET. The 

average power when including effect sizes for logistic regression was 21.3%, under the 

same conditions power without effect sizes was 25.4%. When the focal group size was 20 

or below the average power for each of the methods decreased across all conditions of 

DIF magnitude. The average went from 24.4% to 8.7% for MH, 22.0% to 6.3% for ET, 

and 25.4% to 11.8% for LR. However, when the focal group size was 20 or below, MH 

experienced the largest decline in practical significance. LR had the highest power in 

identifying practically significant items when sample sizes were extremely small, 

although this power was still very small. 

Comparison Based on 20% of Items Containing DIF 

Item one. When 20% of the items had DIF, the same patterns were seen for DIF 

detection in item one as in the conditions where item one was the only DIF item (10% of 

the items had DIF, see Table 8). As the DIF magnitude increased from weak ( FR bb − =  -

0.25) to strong ( FR bb −  = -1.00) logistic regression’s average power across all of the 

focal group’s sample sizes increased from 6.9% to 33.9%, for item one. Under the same 

conditions, MH’s rate of DIF detection increased from 5.9% to 30.4% and the exact test’s 

rate increased from 4.9% to 27.7%. Logistic regression exhibited the greatest gain in 
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power as the DIF magnitude increased from weak to strong, still well below 80%. As 

expected, all three procedures performed best when the magnitude of DIF was strongest. 

The overall average power for MH was 16.6%, 14.3% for the ET, and 18.8% for LR. 

These results demonstrate a slight decrease from the conditions where item one was the 

only DIF item (10% of the items had DIF). The overall average power for item one 

decreased by 1.0% for both MH and the ET, and 0.8% for LR as the number of items 

with DIF increased from 10% to 20%.  
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Table 8 

20% of Items with DIF: Item One 

Power and Power with Effect Sizes by Focal Group Size and DIF Magnitude (Percent) 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with ES 

 

.25 

 

5 

 

5 

 

1 

 

4 

 

4 

 

10 

 

9 

 10 6 4 4 4 7 6 

 20 5 5 3 3 5 5 

 40 6 6 6 6 7 6 

 60 4 4 4 4 6 5 

 80 8 8 7 7 8 6 

 100 7 7 6 6 5 5 

.50 5 3 1 1 1 10 10 

 10 5 4 4 4 7 6 

 20 13 13 6 6 13 11 

 40 8 8 7 7 6 6 

 60 13 13 11 11 18 14 

 80 16 16 14 14 18 18 

 100 18 18 17 17 22 18 

.75 5 6 2 2 2 13 10 

 10 7 7 3 3 10 9 

 20 9 9 7 7 9 6 

 40 18 18 17 17 18 18 

 60 22 22 20 20 24 23 

 80 3 30 26 26 30 29 

 100 44 44 38 38 44 37 

1.00 5 3 1 2 2 14 13 

 10 9 8 5 5 10 9 

 20 21 21 17 17 24 18 

 40 34 34 30 30 37 34 

 60 43 43 41 41 46 40 

 80 52 52 49 49 54 47 

 100 51 51 50 50 52 48 

Note. ES refers to effect size 
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Item two. Logistic regression slightly exceeded both MH and the exact test in 

detecting DIF for item two (see Table 9). Under the weakest DIF magnitude conditions 

the mean detection rate for logistic regression across focal group sizes was 10.6% 

compared to 8.9% for MH, and 7.7% for the ET. As the DIF magnitude increased in 

strength the performance of all three procedures increased as well with logistic regression 

slightly outperforming the other two. When the magnitude of DIF was strongest, logistic 

regression had an average power of 51.1%. Under the same conditions MH’s average rate 

was 49.0% and the exact test’s was 45.6%. The strength of each procedure’s performance 

corresponded to the strength of the DIF magnitude. When focal group sample sizes were 

above 20 the average power across DIF magnitudes for LR was 39.9%. This decreased to 

an average of 14.8% for sample sizes of 20 and below. For these same conditions, MH 

went from 38.8% to 12.6% and the ET went from 36.3 % to 9.6%. The mean power rate 

across all conditions for item two was 29.1% for LR, 27.6% for MH, and 24.9% for the 

ET. The rates for item two were noticeably higher than the mean power rates for item one 

but not near the acceptable rate of 80%. All three procedures had satisfactory power 

measures for item two with a focal group size of 100 and DIF magnitude of 1.00.  
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Table 9 

20% of Items with DIF: Item Two 

Power and Power with Effect Sizes by Focal Group Size and DIF Magnitude (Percent) 

 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

 

 

 

N 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with ES 

 

Power 

 

Power with 

ES 

 

.25 

 

5 

 

4 

 

1 

 

3 

 

3 

 

10 

 

10 

 10 4 3 3 3 7 7 

 20 7 7 6 6 7 7 

 40 11 11 11 11 12 12 

 60 12 12 10 10 10 10 

 80 8 8 7 7 10 10 

 100 16 16 14 14 18 18 

.50 5 8 2 5 5 9 9 

 10 10 10 5 5 8 8 

 20 11 11 11 11 12 12 

 40 21 21 19 19 21 21 

 60 21 21 19 19 22 22 

 80 33 33 27 27 31 31 

 100 31 31 27 27 34 34 

.75 5 7 1 4 4 10 10 

 10 12 10 9 9 13 13 

 20 19 19 16 16 18 18 

 40 29 29 27 27 32 31 

 60 39 39 33 33 44 44 

 80 60 60 55 55 60 59 

 100 66 66 66 66 69 69 

1.00 5 14 2 9 9 27 27 

 10 23 18 16 16 24 24 

 20 32 32 28 28 32 32 

 40 50 50 47 47 51 50 

 60 67 67 66 66 67 67 

 80 72 72 70 70 71 70 

 100 85 85 83 83 86 86 

Note. ES refers to effect size 
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An analysis of power with effect size identified logistic regression as slightly 

outperforming MH and the exact test across all conditions for both items one and two. 

Logistic regression’s effect size and power calculations had almost identical values for 

item one and two; this was also the case with the exact test. The MH procedure illustrated 

the greatest difference in power and power with effect size. As conditions became less 

extreme, the difference between the procedures decreased. Power when effect sizes were 

included identified logistic regression as having slightly higher rates, this advantage 

increased as sample sizes became increasingly large.  

Comparison Based on 30% of Items Containing DIF 

Items one and two. As the percentage of items induced with DIF increased from 

10% to 20% and 20% to 30%, the average power for all three methods remained 

relatively constant. When 30% of the items were embedded with DIF, item one 

demonstrated a mean power rate of 17.5% for MH, 15.4% for the ET, and 19.7% for LR 

while item two’s values were 26.8% for MH, 23.9% for the ET, and 28.3% for LR (see 

Tables 10 and 11). These averages are similar to the values calculated when 10% of the 

items had DIF and slightly higher than the values calculated when 20% of the items had 

DIF. There was a slight increase for all three methods as the items with DIF increased 

from 20% to 30%. Both MH and LR’s mean power increased by 0.9%, while the ET’s 

mean power increased by 1.1%. The percent of items with DIF did not impact overall 

power rates for items one and two when compared with conditions with 10% or 20% of 

items with DIF. Similar to these conditions, both items displayed a power rate closer to 

the acceptable rate of 80% as the percent of DIF items increased. This was observed 

when the DIF magnitude was1.00 and focal group size was 100 for item one and DIF 

magnitude was 1.00 and focal group size was greater than 20 for item two.  
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Table 10 

30% of Items with DIF: Item One 

Power and Power with Effect Sizes by Focal Group Size and DIF Magnitude (Percent) 

 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with ES 

 

.25 

 

5 

 

3 

 

2 

 

3 

 

3 

 

11 

 

10 

 10 8 4 5 5 9 8 

 20 5 5 4 4 5 4 

 40 7 7 6 6 7 7 

 60 7 7 7 7 9 8 

 80 6 6 5 5 6 6 

 100 6 6 6 6 9 8 

.50 5 6 2 3 3 12 12 

 10 11 7 7 7 10 9 

 20 8 8 8 8 9 8 

 40 10 10 10 10 12 12 

 60 14 14 12 12 15 14 

 80 20 20 17 17 18 16 

 100 22 22 20 20 23 22 

.75 5 4 1 3 3 12 12 

 10 11 9 7 7 14 13 

 20 10 10 7 7 11 11 

 40 20 20 16 16 21 19 

 60 25 25 25 25 26 25 

 80 35 35 32 32 34 31 

 100 34 34 30 30 35 33 

1.00 5 6 2 4 4 21 19 

 10 10 7 8 8 12 11 

 20 24 24 20 20 28 26 

 40 32 32 29 29 33 29 

 60 41 41 37 37 42 39 

 80 45 45 41 41 46 39 

 100 61 61 60 60 61 57 

Note. ES refers to effect size 
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Table 11 

30% of Items with DIF: Item Two 

Power and Power with Effect Sizes by Focal Group Size and DIF Magnitude (Percent) 

 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with ES 

 

.25 

 

5 

 

6 

 

2 

 

4 

 

4 

 

10 

 

10 

 10 3 2 2 2 3 3 

 20 7 7 5 5 6 6 

 40 11 11 8 8 12 12 

 60 11 11 9 9 12 11 

 80 11 11 9 9 12 12 

 100 14 14 12 12 15 15 

.50 5 7 2 5 5 9 9 

 10 9 6 7 7 11 11 

 20 8 8 7 7 12 11 

 40 16 16 14 14 15 15 

 60 22 22 20 20 22 21 

 80 26 26 24 24 29 29 

 100 28 28 26 26 27 27 

.75 5 4 0 2 2 12 12 

 10 12 10 10 10 16 16 

 20 21 21 16 16 21 21 

 40 38 38 34 34 41 41 

 60 44 44 41 41 44 44 

 80 50 50 45 45 50 50 

 100 61 61 58 58 63 63 

1.00 5 10 0 6 6 17 16 

 10 13 9 10 10 15 15 

 20 32 32 26 26 32 32 

 40 60 60 55 55 57 57 

 60 70 70 65 65 72 72 

 80 72 72 67 67 74 74 

 100 83 83 81 81 83 83 

Note. ES refers to effect size 
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Item three. The impact of DIF magnitude on power was amplified for item three 

for all three procedures (see Table 12). As the DIF magnitude increased from weak      

(bR – bF  = -0.25) to strong (bR – bF  = -1.00) logistic regression’s average power across 

all of the focal group’s sample sizes increased from 11.9% to 75.1%. Under the same 

conditions MH’s rate of DIF detection increased from 11.4% to 74.6% and the exact 

test’s rate increased from 10.3% to 71.1%. As the strength of the DIF magnitude 

increased the performance of each method also increased. The impact of sample size on 

item three was consistent with the results of items one and two; as the focal group size 

increased the three procedures increased in performance. Each of the three methods had 

acceptable detection rates when the DIF magnitude was 0.75 and focal group sample size 

was above 40. When the DIF magnitude increased to 1.00 and focal group sample size 

was greater than 20 all three procedures had a detection rate of 100%.  
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Table 12 

30% of Items with DIF: Item Three 

Power and Power with Effect Sizes by Focal Group Size and DIF Magnitude (Percent) 

 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with ES 

 

Power 

 

Power 

with ES 

 

.25 

 

5 

 

3 

 

1 

 

2 

 

2 

 

5 

 

5 

 10 4 4 3 3 3 3 

 20 7 7 6 6 7 7 

 40 13 13 12 12 15 15 

 60 12 12 12 12 12 12 

 80 20 20 18 18 20 20 

 100 21 21 19 19 21 21 

.50 5 8 2 6 6 9 9 

 10 10 9 8 8 10 10 

 20 19 19 16 16 19 19 

 40 34 34 27 27 29 29 

 60 51 51 47 47 48 48 

 80 59 59 54 54 54 54 

 100 75 75 73 73 76 76 

.75 5 10 5 6 6 13 13 

 10 22 21 17 17 17 17 

 20 40 40 34 34 39 39 

 40 71 71 67 67 71 71 

 60 89 89 86 86 87 87 

 80 91 91 91 91 91 91 

 100 91 91 91 91 92 92 

1.00 5 22 15 11 11 23 23 

 10 37 31 32 32 38 38 

 20 67 66 61 61 69 69 

 40 96 96 94 94 96 96 

 60 100 100 100 100 100 100 

 80 100 100 100 100 100 100 

 100 100 100 100 100 100 100 

Note. ES refers to effect size 
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Along with changes in DIF magnitude and focal group sample size, each method 

demonstrated sensitivity to parameter changes. The magnitude difference between the b 

parameters of items one and two was approximately equal to the magnitude difference 

between items two and three. Item three was the least difficult of the DIF items, the b-

value was -0.229 (see Table 4). For item three, both statistical and practical significance 

measures had a mean of 45.1% for logistic regression across all conditions.  

Similar to the results of conditions with 10% of items with DIF and 20% of items 

with DIF logistic regression demonstrated slightly higher power than MH and the exact 

test in identifying DIF items when 30% of items contained DIF. The exact test displayed 

a slightly poorer performance than the other two procedures for item three, with average 

power of 42.6% compared to approximately 45% for both MH and logistic regression. 

When effect size measures were taken into account, MH had a slightly superior 

performance to logistic regression only when sample sizes were above 20. As sample 

sizes decreased to 20 and below, LR consistently demonstrated slightly greater practical 

significance relative to MH and ET but still not high power.  

Practical Significance 

The items flagged as having statistically significant DIF were then categorized as 

having either negligible (category A), intermediate (category B) or large (category C) 

DIF. The proportions of these statistically significant DIF items that fell in the three 

categories are presented in Tables 13 through 18 for each of the three DIF detection 

procedures. Recall category A items, negligible DIF, included those items that did not 

have statistical significance. For some of the conditions, the percentages in each category 

(A, B, and C) do not add up to 100%. This is because unattainable MH-DIF values could 
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not be categorized and therefore were not included in Tables 13 through 18. These values 

are listed in Table 19.   

 

Table 13 

10% of Items with DIF: Item One 

 

Percent of Category A, B, and C Item by Focal Group Size and Magnitude of DIF 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 
 

.25 

 

5 

 

98.5 

 

0.0 

 

0.5 

 

98.5 

 

0.0 

 

1.5 

 

96.0 

 

3.5 

 

0.5 

 10 94.0 0.0 5.5 94.0 0.0 6.0 92.0 8.0 0.0 

 20 94.0 0.0 6.0 94.0 0.0 6.0 92.5   7.5 0.0 

 40 93.5 0.0 6.5 93.5 0.0 6.5 97.0 3.0 0.0 

 60 94.0 0.0 6.0 94.0 0.0 6.0 93.5 6.5 0.0 

 80 95.5 0.5 4.0 95.5 0.5 4.0 90.5 4.5 0.0 

 100 94.5 3.0 2.5 94.5 3.0 2.5 96.0 5.0 0.0 

.50 5 98.0 0.0 0.0 98.0 0.0 2.0 94.5 5.5 0.0 

 10 91.0 0.0 7.5 91.0 0.0 9.0 93.0 7.0 0.0 

 20   92.5        0.0 7.5 92.5 0.0 7.5 94.0 6.0 0.0 

 40 86.0 0.0  14.0 86.0 0.0 14.0 86.5 13.5 0.0 

 60 82.0 0.0  18.0 82.0 0.0 18.0 85.0 14.0 0.0 

 80 82.0 1.5  16.5 82.0 1.5 16.5 81.5 18.5 0.0 

 100 78.5 6.0 15.5 78.5 6.0 15.5 80.0 20.0 0.0 

.75 5 93.0 0.0 0.5 93.0 0.0 7.0 85.0 15.0 0.0 

 10 90.5 0.0 6.5 90.5 0.0 9.5 91.0 9.0 0.0 

 20 88.0 0.0 12.0 88.0 0.0 12.0 90.5 8.5 1.0 

 40 78.5 0.0 21.5 78.5 0.0 21.5 79.0 21.0 0.0 

 60 72.0 0.0 28.0 72.0 0.0 28.0 75.0 24.5 0.5 

 80 70.0 1.5 29.0 70.0 1.5 29.0 70.0 30.0 0.0 

 100 66.0 4.0 30.0 66.0 4.0 30.0 73.0 27.0 0.0 

1.00 5 94.5 0.0 0.5 94.5 0.0 5.5 90.5 9.5 0.0 

 10 85.5 0.0 9.5 85.5 0.0 14.5 83.0 17.0 0.0 

 20 79.5 0.0 19.5 79.5 0.0 20.5 83.0 16.0 1.0 

 40 67.5 0.0 32.5 67.5 0.0 32.5 70.0 30.0 0.5 

 60 62.0 0.0 38.0 62.0 0.0 38.0 67.5 32.5 0.0 

 80 56.0 1.0 53.0 56.0 1.0 53.0 58.5 41.5 0.0 

 100 45.5 4.0 50.5 45.5 4.0 50.5 55.5 44.5 0.0 

Note. A, B, and C may not total 100% since unattainable values could not be categorized. 

 

 

 

 



54 

 

 

 

Table 14  

 

20% of  Items with DIF: Item One 

 

Percent of Category A, B, and C Item by Focal Group Size and Magnitude of DIF 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 
 

.25 

 

5 

 

95.5 

 

0.0 

 

2.0 

 

95.5 

 

0.0 

 

4.5 

 

91.0 

 

9.0 

 

0.0 

 10 94.5 0.0 1.0 94.5 0.0 5.5 94.5 5.0 0.5 

 20 95.5 0.0 4.5 95.5 0.0 4.5 95.0 5.0 0.0 

 40 94.0 0.0 6.0 94.0 0.0 6.0 94.0 5.5 0.5 

 60 96.0 0.0 4.0 96.0 0.0 4.0 95.5 4.5 0.0 

 80 92.5 0.0 7.5 92.5 0.0 7.5 94.0 6.0 0.0 

 100 93.0 2.0 5.0 93.0 2.0 5.0 95.0 5.0 0.0 

.50 5 97.0 0.0 0.5 97.0 0.0 3.0 90.5 9.5 0.0 

 10 95.0 0.0 4.0 95.0 0.0 5.0 94.5 0.5 0.5 

 20    87.0 0.0 12.5    

87.0 

0.0 13.0 89.5 10.5 0.0 

 40 92.0 0.0 8.0 92.0 0.0 8.0 94.5 5.0 0.5 

 60 87.5 0.0 12.5 87.5 0.0 12.5 86.0 14.0 0.0 

 80 84.5 0.5 15.5 84.5 0.5 15.5 82.5 17.5 0.0 

 100 82.0 2.5 16.0 82.0 2.5 16.0 82.5 17.5 0.0 

.75 5 94.0 0.0 1.5 94.0 0.0 6.0 90.0 9.5 0.5 

 10 93.5 0.0 6.5 93.5 0.0 6.5 91.5 8.5 0.0 

 20 91.5 0.0 8.5 91.5 0.0 8.5 94.0 5.5 0.5 

 40 82.0 0.0 18.0 82.0 0.0 18.0 82.5 16.5 1.0 

 60 78.0 0.0 22.0 78.0 0.0 22.0 77.5 22.5 0.0 

 80 70.0 1.5 27.5 70.0 1.5 27.5 71.5 27.0 1.5 

 100 56.5 7.5 36.0 56.5 7.5 36.0 63.0 36.0 1.0 

1.00 5 97.0 00 0.5 97.0 0.0 3.0 87.5 12.5 0.0 

 10 91.0 0.0 8.0 91.0 0.0 9.0 91.5 7.5 1.0 

 20 79.0 0.0 21.0 79.0 0.0 21.0 82.0 15.5 2.5 

 40 66.0 0.0 34.0 66.0 0.0 34.0 61.5 32.5 1.0 

 60 57.0 0.0 43.0 57.0 0.0 43.0 60.0 40.0 0.0 

 80 48.0 1.5 50.5 48.0 1.5 50.5 53.5 46.5 0.0 

 100 49.0 3.0 48.0 49.0 3.0 48.0 52.0 47.0 1.0 

Note. A, B, and C may not total 100% since unattainable values could not be categorized. 
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Table 15  

20% of Items with DIF: Item Two 

 

Percent of Category A, B, and C Item by Focal Group Size and Magnitude of DIF 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 
 

.25 

 

5 

 

96.5 

 

0.0 

 

0.5 

 

96.5 

 

0.0 

 

3.5 

 

90.0 

 

7.5 

 

2.5 

 10 96.0 0.0 3.0 96.0 0.0 4.0 93.5 5.5 1.0 

 20 93.0 0.0 7.0 93.0 0.0 7.0 92.5 6.5 2.0 

 40 89.0 0.0 11.0 89.0 0.0 11.0 88.0 9.5 2.5 

 60 88.5 0.0 11.5 88.5 0.0 11.5 92.0 7.5 0.5 

 80 82.5 0.5 7.0 82.5 0.5 7.0 90.5 8.5 1.0 

 100 84.5 2.0 13.5 84.5 2.0 13.5 82.0 15.5 2.5 

.50 5 92.0 0.0 2.0 92.0 0.0 8.0 91.5 6.0 2.5 

 10 90.5 0.0 9.5 90.5 0.0 9.5 92.0 7.0 1.0 

 20 89.0 0.0 11.0 89.0 0.0 11.0 88.0 10.0 2.0 

 40 79.5 0.0 20.5 79.5 0.0 20.5 79.5 16.0 4.5 

 60 79.0 0.0 21.0 79.0 0.0 21.0 78.0 20.5 1.5 

 80 67.5 2.0 30.5 67.5 2.0 30.5 69.5 26.0 4.5 

 100 69.0 6.0 25.0 69.0 6.0 25.0 66.5 31.5 2.0 

.75 5 93.0 0.0 1.5 93.0 0.0 6.0 90.5 8.0 1.5 

 10 88.0 0.0 6.5 88.0 0.0 6.5 87.5 9.0 3.5 

 20 81.5 0.0 8.5 81.5 0.0 8.5 82.0 14.5 3.5 

 40 71.0 0.0 18.0 71.0 0.0 18.0 69.0 23.0 8.0 

 60 61.0 0.0 22.0 61.0 0.0 22.0 56.0 37.5 6.5 

 80 40.0 2.0 58.0 40.0 2.0 58.0 41.0 49.5 9.5 

 100 36.0 7.5 58.5 36.0 7.5 58.5 31.0 56.5 12.5 

1.00 5 86.5 0.0 0.5 86.5 0.0 3.0 73.5 18.0 8.5 

 10 77.5 0.0 8.0 77.5 0.0 9.0 25.5 17.5 7.0 

 20 68.5 0.0 21.0 68.5 0.0 21.0 68.0 24.0 8.0 

 40 50.5 0.0 34.0 50.5 0.0 34.0 50.0 37.0 13.0 

 60 33.0 0.0 43.0 33.0 0.0 43.0 35.5 58.5 8.0 

 80 28.5 1.5 50.5 28.5 1.5 50.5 30.0 60.5 9.5 

 100 15.0 3.0 48.0 15.0 3.0 48.0 14.5 72.0 13.5 

Note. A, B, and C may not total 100% since unattainable values could not be categorized. 
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Table 16 

 

30% of Items with DIF: Item One 

 

Percent of Category A, B, and C Item by Focal Group Size and Magnitude of DIF 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 
 

.25 

 

5 

 

97.5 

 

0.0 

 

2.5 

 

97.5 

 

0.0 

 

3.5 

 

90.0 

 

9.5 

 

0.5 

 10 92.5 0.0 7.5 92.5 0.0 11 92.0 7.0 1.0 

 20 95.0 0.0 5.0 95.0 0.0 5.0 96.5 3.5 0.0 

 40 93.0 0.0 7.0 93.0 0.0 5.0 93.5 6.5 0.0 

 60 93.5 0.0 6.5 93.5 0.0 6.5 92.0 8.0 0.0 

 80 94.5 0.5 5.0 94.5 0.5 5.0 94.5 5.0 0.5 

 100 94.0 1.0 5.0 94.0 1.0 5.0 92.0 7.5 0.5 

.50 5 94.5 0.0 5.5 94.5 0.0 10.0 88.5 10.0 1.5 

 10 89.5 0.0 10.5 89.5 0.0 14.0 91.0 7.5 1.5 

 20   92.0 0.0 8.0   92.0 0.0 8.0 92.0 7.0 1.0 

 40 90.0 0.0 10.0 90.0 0.0 10.0 88.5 10.0 1.5 

 60 86.0 0.0 14.0 86.0 0.0 14.0 86.0 14.0 0.0 

 80 80.0 1.0 19.0 80.0 1.0 19.0 84.5 15.5 0.0 

 100 78.0 5.0 17.0 78.0 5.0 17.0 78.5 21.0 0.5 

.75 5 96.5 0.0 3.5 96.5 0.0 6.5 88.0 12.0 0.0 

 10 89.0 0.0 11.0 89.0 0.0 13.5 87.5 12.0 0.5 

 20 90.5 0.0 9.5 90.5 0.0 9.5 89.0 10.5 0.5 

 40 80.5 0.0 19.5 80.5 0.0 19.5 81.0 19.0 0.0 

 60 75.0 0.5 24.5 75.0 0.5 24.5 75.0 24.5 0.5 

 80 65.5 1.5 33.0 65.5 1.5 33.0 69.5 30.5 0.0 

 100 66.5 3.5 30.0 66.5 3.5 30.0 67.0 32.0 1.0 

1.00 5 94.5 0.0 5.5 94.5 0.0 10.5 81.0 17.0 2.0 

 10 90.0 0.0 10.0 90.0 0.0 13.5 89.0 10.0 1.0 

 20 76.5 0.0 23.5 76.5 0.0 23.5 74.5 24.0 1.5 

 40 68.5 0.0 31.5 68.5 0.0 31.5 71.0 27.5 1.5 

 60 59.5 0.0 40.5 59.5 0.0 40.5 61.0 37.5 1.5 

 80 54.5 2.0 42.5 54.5 2.0 42.5 61.5 38.0 0.5 

 100 39.0 9.0 56.5 39.0 9.0 56.5 43.0 54.0 3.0 

Note. A, B, and C may not total 100% since unattainable values could not be categorized. 
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Table 17 

30% of Items with DIF: Item Two 

 

Percent of Category A, B, and C Item by Focal Group Size and Magnitude of DIF 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 
 

.25 

 

5 

 

94.5 

 

0.0 

 

5.5 

 

94.5 

 

0.0 

 

9.5 

 

90.0 

 

9.0 

 

1.0 

 10 97.5 0.0 2.5 97.5 0.0 3.0 97.0 2.5 0.5 

 20 93.0 0.0 7.0 93.0 0.0 7.0 94.0 5.5 0.5 

 40 89.0 0.0 11.0 89.0 0.0 11.0 89.0 10.5 1.0 

 60 89.5 0.0 10.5 89.5 0.0 10.5 89.0 9.0 2.0 

 80 89.0 0.0 11.0 89.0 0.0 11.0 88.5 7.0 4.5 

 100 86.0 1.5 12.5 86.0 1.5 12.5 85.0 13.0 2.0 

.50 5 93.5 0.0 6.5 93.5 0.0 11.5 91.5 7.0 1.5 

 10 91.5 0.0 8.5 91.5 0.0 11.5 89.0 8.5 2.5 

 20 92.0 0.0 8.0 92.0 0.0 8.0 89.0 8.5 2.5 

 40 84.5 0.0 15.5 84.5 0.0 15.5 85.5 11.5 3.0 

 60 78.5 0.0 21.5 78.5 0.0 21.5 79.0 14.5 6.5 

 80 74.5 1.0 24.5 74.5 1.0 24.5 71.0 24.5 4.5 

 100 72.5 0.0 27.5 72.5 0.0 27.5 73.5 22.0 4.5 

.75 5 96.0 0.0 4.0 96.0 0.0 8.0 88.0 9.0 3.0 

 10 88.0 0.0 12.0 88.0 0.0 14.5 84.0 13.0 3.0 

 20 79.5 0.0 20.5 79.5 0.0 20.5 79.0 14.5 6.5 

 40 62.5 0.0 37.5 62.5 0.0 37.5 59.5 32.0 8.5 

 60 56.0 0.0 44.0 56.0 0.0 44.0 56.5 34.0 9.5 

 80 50.5 0.0 49.5 50.5 0.0 49.5 50.0 42.5 7.5 

 100 39.0 3.5 57.5 39.0 3.5 57.5 37.0 51.0 12.0 

1.00 5 90.5 0.0 9.5 90.5 0.0 19.0 84.0 12.5 3.5 

 10 87.5 0.0 12.5 87.5 0.0 16.0 85.5 11.5 3.0 

 20 68.0 0.0 32.0 68.0 0.0 32.5 68.5 23.0 8.5 

 40 40.5 0.0 59.5 40.5 0.0 59.5 43.5 44.5 12.0 

 60 30.5 0.0 69.5 30.5 0.0 69.5 28.0 59.0 13.0 

 80 28.0 1.0 80.5 28.0 1.0 80.5 26.5 57.5 16.0 

 100 17.5 2.0 71.0 17.5 2.0 71.0 17.0 70.0 13.0 

Note. A, B, and C may not total 100% since unattainable values could not be categorized. 
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Table 18  

30% of Items with DIF: Item Three 

 

Percent of Category A, B, and C Item by Focal Group Size and Magnitude of DIF 

 

bR – bF 

 

Focal 

 

MH 

 

Exact 

 

Logistic 

  

N 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 

 

A 

 

B 

 

C 
 

.25 

 

5 

 

97.0 

 

0.0 

 

3.0 

 

97.0 

 

0.0 

 

4.5 

 

95.5 

 

1.5 

 

3.0 

 10 96.0 0.0 4.0 96.0 0.0 5.0 97.0 0.0 3.0 

 20 93.5 0.0 6.5 93.5 0.0 6.5 93.5 1.0 5.5 

 40 87.0 0.0 13.0 87.0 0.0 13.0 85.0 2.0 13.0 

 60 88.5 0.0 11.5 88.5 0.0 11.5 88.5 1.0 10.5 

 80 80.5 0.0 19.5 80.5 0.0 19.5 80.0 1.0 19.0 

 100 79.0 2.5 18.5 79.0 2.5 18.5 79.5 3.0 17.5 

.50 5 92.5 0.0 7.5 92.5 0.0 13.0 91.5 1.5 7.0 

 10 90.0 0.0 10.0 90.0 0.0 11.0 90.0 0.5 9.5 

 20   81.5 0.0 18.5   81.5 0.0 18.5 81.5 1.5 17.0 

 40 66.0 0.0 34.0 66.0 0.0 34.0 71.0 2.0 27.0 

 60 49.5 0.0 50.5 49.5 0.0 50.5 52.0 3.5 44.5 

 80 41.5 0.0 58.5 41.5 0.0 58.5 46.0 3.0 51.0 

 100 25.5 0.0 74.5 25.5 0.0 74.5 24.5 2.0 73.5 

.75 5 90.0 0.0 10.0 90.0 0.0 15.5 87.5 2.5 10.0 

 10 78.5 0.0 21.5 78.5 0.0 22.5 83.0 1.5 15.5 

 20 60.0 0.0 40.0 60.0 0.0 40.0 61.5 4.5 34.0 

 40 39.5 0.0 70.5 39.5 0.0 70.5 29.0 5.0 66.0 

 60 11.5 0.0 88.5 11.5 0.0 88.5 13.0 5.0 82.0 

 80 9.5 0.0 90.5 9.5 0.0 90.5 9.0 5.0 86.0 

 100 9.0 0.0 91.0 9.0 0.0 91.0 8.0 0.0 92.0 

1.00 5 81.5 0.0 21.5 81.5 0.0 28.5 77.5 1.5 21.0 

 10 63.0 0.0 37.0 63.0 0.0 43.5 62.0 2.5 35.5 

 20 33.5 0.0 66.5 33.5 0.0 67.5 31.5 3.0 65.5 

 40 4.0 0.0 96.0 4.0 0.0 96.0 4.5 4.5 91.0 

 60 0.0 0.0 100.0 0.0 0.0 100.0 0.0 2.5 97.5 

 80 0.0 0.0 100.0 0.0. 0.0 100.0 0.0 2.0 98.0 

 100 0.0 0.0 100.0 0.0 0.0 100.0 0.0 1.5 98.5 

Note. A, B, and C may not total 100% since unattainable values could not be categorized. 
 

 

The exact test identified statistically significant items as displaying category C, 

strong DIF, more frequently than MH or LR. The exact test displayed an advantage over 

MH and LR in identifying items as having statistical and practical significance when the 

sizes of the focal group were small across all conditions. When the focal group sample 
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sizes increased to include 60, MH performance equaled that of the exact test. LR did not 

exhibit this trend. As the conditions changed from 10% to 30% of the items having DIF, 

more items were classified as C for all three of the procedures when item three was 

examined. The greatest change was observed with logistic regression.   

Logistic regression demonstrated the lowest frequency in categorizing items with 

statistical and practical significance as category C. It was the most robust procedure; 

however, LR was more likely to identify items that had statistical significance but lacked 

practical significance. This frequency difference in identifying statistical and practical 

significance highlighted a weakness in the LR method. However, as the percentage of 

items containing DIF increased so did logistic regression’s detection of items with 

statistical and practical significance across all conditions. 

Table 19 presents the proportion of statistically significant items that had 

unattainable effect sizes that could not be calculated.   
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Table 19 

Percent of an Unattainable MH D-DIF Value per Run per Condition for MH 

 

Condition 

 

Item 1 

 

Item 2 

 

Item 3 

 

10%   DIF Magnitude .25 

   

                 Focal Group  5 67   

                   Focal Group  10 8   

          DIF Magnitude .50    

                   Focal Group  5 100   

                   Focal Group  10 17   

          DIF Magnitude .75    

                   Focal Group  5 93   

                   Focal Group  10 32   

          DIF Magnitude 1.00    

                   Focal Group  5 91   

                   Focal Group  10 31   

                   Focal Group  20       2   

20%   DIF Magnitude .25    

                   Focal Group  5 78 86  

                   Focal Group  10 27 25  

          DIF Magnitude .50    

                   Focal Group  5 83 75  

                   Focal Group  10 20 -  

                   Focal Group  20 4 -  

          DIF Magnitude .75    

                   Focal Group  5 75 86  

                   Focal Group  10 - 21  

          DIF Magnitude 1.00    

                   Focal Group  5 83 89  

                   Focal Group  10 11 22  

30%   DIF Magnitude .25    

                   Focal Group  5 40 20 67 

                   Focal Group  10 47 73 13 

          DIF Magnitude .50    

                   Focal Group  5 82 77 73 

                   Focal Group  10 33 35 10 

          DIF Magnitude .75    

                   Focal Group  5 86 100 55 

                   Focal Group  10 23 21 5 

          DIF Magnitude 1.00    

                   Focal Group  5 91 100 33 

                   Focal Group  10 35 28 18 

                   Focal Group  20 - 2 2 
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CHAPTER 5 

CONCLUSION 

This chapter presents a summary of the findings of this study. A comparison is 

first made between study findings and current research. Secondly, a comparison of the 

three methods investigated is presented. Strengths and limitations of this study are then 

discussed. Lastly, implications of this study are presented followed by a discussion on 

future research directions. 

Summary 

Identifying items containing DIF is a crucial step in providing valid assessments. 

This study focused on expanding the conditions Parshall and Miller (1995) examined in 

order to add to the research on DIF identification under extremely small sample sizes. To 

accomplish this goal, power and effect size measures of three categorical procedures, the 

exact test, MH, and logistic regression, were compared on how well they identified items 

embedded with DIF. Prior to this study, a comparison of all three methods had not been 

completed. The results revealed a number of characteristics which had an effect on DIF 

detection.    

Results and comparisons with previous research. All three methods demonstrated 

acceptable mean power rates for the same conditions and items. The percentage of items 

with DIF did not impact the rate of acceptability for the three procedures. Instead, the 

item discrimination parameter, a, demonstrated a visible impact. None of the procedures 

were effective in obtaining an acceptable mean power rate for item one, regardless of the 
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study conditions. Item one had the lowest item discrimination value (0.612) of the three 

items with DIF. This was not the case for items two and three. Recall that the item 

discrimination values for all items are listed in Table 4. The most favorable condition for 

item two, focal group size of 100 and a DIF magnitude of 1.00 resulted in power rates 

above 80% for all three procedures. The number of conditions resulting in acceptable 

power rates increased from item two to item three. For item three, all three procedures 

demonstrated acceptable power rates when the focal group size exceeded 40 and bR – bF 

= -0.75 and for focal group sizes above 20 when bR – bF = -1.00. As expected, higher 

group sizes resulted in higher power for DIF detection. 

The exact test did not offer a clear advantage over MH, despite the fact that MH is 

an approximation of the ET. This finding was consistent with that of Parshall and Miller 

(1995) despite the smaller focal and reference group sample sizes employed in this study. 

MH had slightly higher power compared with ET, even under the most extreme sample 

size conditions. Although MH was more powerful, it was unable to demonstrate an 

acceptable rate of power, 80% or above, in most conditions. Unlike Parshall and Miller 

(1995), Meyer et al.’s (2004) applied study included effect size measures in their 

comparison of the ET and MH. The findings of this study are somewhat consistent with 

their findings. When unattainable MH D-DIF values were considered, MH demonstrated 

larger power with effect size measures than the ET when the focal group sample size was 

20 and below. When these values were not included, however, the ET demonstrated 

superiority. The present study found that as sample size of the focal group increased the 

difference between the two procedures’ power with effect size measures diminished. An 

examination of the labeling of items as strong or intermediate DIF presented the exact 
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test as somewhat more advantageous. The exact test had a greater proportion of items 

classified as strong DIF when compared to MH. Meyer et al.’s applied study found that 

items were equally likely to be classified as strong DIF by both methods.  

Logistic regression’s slight superiority regarding power was pervasive. These 

findings are not consistent with the research completed by Hidalgo and Lopez-Pina 

(2004), who found MH to be superior when identifying uniform DIF compared with LR. 

Their study, however, used large sample sizes for both the reference and the focal group. 

This study resulted in LR consistently displaying a greater effectiveness at detecting 

uniform DIF when compared to MH. Although logistic regression had higher power than 

the ET and MH, power in most conditions was still below the acceptable 80%. When the 

size of the sample was 20 or less, power differences between MH and LR were sizable. 

As sample sizes increased to above 20, average power differences between the two 

procedures diminished. Consistent with Swaminathan and Rogers’ (1990) study both of 

the methods’ power decreased as focal group sample size decreased.  

All three methods were most robust in identifying DIF in item three. This item 

had an a parameter value of 1.8 (see Table 4). According to Kristjansson et al. (2005) this 

is a highly discriminating item. This is in contrast to the a parameter values of items one 

and two, both of which are categorized as low. This finding supports the work of 

Kristjansson et al. (2005) on the relationship between power and item discrimination. 

Variations in the a parameter assisted in explaining the large discrepancy in power 

among the three items. None of the three procedures were able to detect item one with an 

acceptable rate in contrast all three procedures detected item three with a power rate of 
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80% or above when the size of the focal group exceeded 40 and DIF magnitude was 0.75 

and above.  

Item two was defined as moderately difficult based on its b parameter value of 

0.259; whereas item one was categorized as a difficult item with a b parameter value of 

0.652, (see Tables 4 and 5). Item three was the least difficult item (b parameter value of -

0.229). It was expected that fewer students would answer item one correctly when 

contrasted to the number of students who answered item two and three correctly. Items 

two and three are also slightly more discriminating than item one. The larger item 

discrimination parameter indicates them as more effective at distinguishing between 

those who have the assessed skill or ability and those who do not.  The difference 

between their item parameter values, both a and b, had an impact on the performance of 

the three procedures being investigated. The impact on power is visible when the 

condition with 30% of DIF items is examined. MH’s power across all conditions for item 

one at the α = .05 level was 17.5%, for item two it was 26.8%, and for item three, it was 

45.4%. The ET’s rate for item one was 15.4% compared to 23.9% for item two and 

42.6% for item three, and LR’s was 19.7% for item one, 28.3% for item two, and 45.1% 

for item three. 

Comparison of investigated methods. The conditions of small reference and small 

focal group sizes did not impact all methods equally. LR’s performance was the most 

robust of the three methods investigated in this study across conditions, although in most 

cases, its advantage over the other procedures was rather small. This was particularly true 

when sample sizes were extreme, 20 or less. As focal group sample sizes increased from 

5 to 100, all methods increased in power, and the differences in power between the three 
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methods also diminished. When effect sizes were taken into account, differences between 

the three procedures was not as pronounced. When the focal group sizes were extremely 

small (e.g., 20 and below) complications arose in the calculation of the effect sizes for the 

MH procedure. Specifically, the effect size for the MH could not be calculated for a 

number of replications. This did not occur with the other two procedures and presents a 

distinction between the MH procedure and the other two examined. An investigation of 

effect sizes did not reveal LR as consistently better than MH or the ET when identifying 

uniform DIF. When the focal group sample size was 20 or below, the mean power with 

effect size for conditions with 30% of items with DIF identified LR as more effective. As 

the size of the focal group increased, however, LR’s advantage over the other methods 

diminished. Focal group sample sizes and changes in DIF magnitude demonstrated a 

greater influence over performance than the percentage of items embedded with DIF. As 

the percent of items with DIF increased the power for detecting DIF in item one (the DIF 

item that was constant in every condition) barely changed. This occurred for item two 

(20% and 30% of items with DIF) as well.  

Both power and effect size measures attested to the slight advantage of MH over 

the exact test. It is possible that the sophistication of technology which makes the exact 

test a viable option has simultaneously increased the effectiveness of the approximation, 

MH. One characteristic of the ET was that a large percent of its items identified as 

practically significant were categorized as having strong DIF. This differed from LR, 

where the majority and under some conditions all items with practical significance were 

labeled as intermediate DIF. It was only when the item was highly discriminating, item 

three, that a majority of items were consistently categorized as having strong DIF for all 
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three procedures. The ET had a larger percent of practically significant items categorized 

as category C, strong DIF, compared to MH when the focal group size was below 20. For 

the same focal group size, however, MH had a higher percent of items categorized as 

practically significant. A direct comparison between MH and the ET cannot be 

completely made, because effect sizes were not obtainable for some MH conditions. 

Much of the current research on small sample size focuses on distinguishing 

which of the two, MH or the exact test, is superior. Although the exact test never 

demonstrated a disparity between measures of practical and statistical significance, MH 

and LR frequently did. The slight strength of the logistic regression procedure with small 

sample size found in this study may be of interest. This examination of the three 

categorical methods revealed that logistic regression is overlooked in the detection of 

uniform DIF. It had slightly higher power in detecting DIF, illustrating a greater 

sensitivity to small sample sizes. Practical significance was not as conclusive. While 

logistic regression displayed higher power compared to the exact test and MH, it did not 

demonstrate an advantage regarding practical significance. This study did not yield a 

conclusive answer regarding the comparative performance of the MH test, the exact test, 

and logistic regression. Further it showed how poorly the three methods worked in 

general with small focal group sample sizes.  

Limitations 

This work is a simulation-based study. As is always the case with simulation 

studies, there is a limit on the number of conditions that can be chosen, due to constraints 

of time and resources.  

The omission of Type I error rates limits the interpretation of the findings. Type I 

error rates for the MH have been studied, but not with small sample sizes. It would be 



67 

 

beneficial to know if one procedure has a greater likelihood of falsely identifying an item 

as being induced with uniform DIF. The similarity in performance between logistic 

regression and MH would greatly benefit by the information provided by Type I error 

rates. Also, the slight advantage demonstrated by logistic regression may be due to the 

identification of false positives.  

Other study limitations include a test length of 10 items. In condition three (30% 

DIF items), only seven items were free of DIF. However, the  a and b parameters 

demonstrated a greater influence over power than test length in this study. Also, in this 

study, one sample size for the reference group was examined along with uniform DIF and 

DIF that consistently favored the reference group. There is the possibility that while DIF 

detection rates were very low in most cases, with a large reference group size, the 

performance of these methods may have improved.  

Implications 

The conditions of test administration that lead to extremely small group sizes 

make the inference of the findings significant. When sample sizes are small and or test 

length is short, the importance of detecting DIF is amplified. With small focal group sizes 

under the conditions examined, no method works well. DIF detection methods will rarely 

detect DIF that is present unless the DIF is large, focal group sizes are large, and the 

items are more discriminating. Specifically, when the focal group sample size is small 

DIF detection does not work. The practice of having focal group sizes 40 or below should 

be avoided when possible. None of the three procedures demonstrated success with 

identifying items containing DIF when the focal group size was below 40. Each 

procedure’s ability to detect DIF for focal group sizes 60 to 100 was affected by the item 

discrimination parameter. It can be implied that the three detection methods may be used 
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if the item is moderately or highly discriminating using the scale employed by 

Kristjansson, Aylesworth, McDowell, and Zumbo (2005). 

This study gave credence to the premise that DIF detection should not be 

practiced when sample sizes are extremely small. However, if it is used, logistic 

regression may be a superior method for detecting items containing uniform DIF under 

extreme conditions. This is significant because large testing companies typically rely 

primarily on MH (Fidalgo, Ferreres, & Muniz, 2004). The magnitude of DIF and or the 

population size cannot easily be controlled in real life scenarios. Using a powerful DIF 

identification procedure is therefore important.  

As educators and testing companies are called to provide fair and equitable tests 

regardless of the population size of the students, testing companies will have to address 

these concerns. Based on the results of this study more research is needed to determine 

limitations associated with logistic regression as a method for detecting uniform DIF. 

Although LR seemed to work best it still did not demonstrate an acceptable power rate 

(80%) under most conditions. It is notable that in this study, logistic regression had 

demonstrated the ability to identify the majority of items as having intermediate DIF, but 

as the items’ ability to discriminate increased, the percentages of items identified as large 

DIF, category C, increased. This differed from the other two procedures for low 

discriminating items. Nonetheless, items that are induced with DIF are slightly more 

likely to be identified by logistic regression than by the exact test or MH.  

Future Research 

A follow-up study to investigate how Type I error rates impact the findings would 

be informative. More research is needed on the role of item discrimination and power. In 

this study, a relationship between the a parameter and power was demonstrated. All three 
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procedures demonstrated a higher percent of acceptable power rates for item three, the 

most discriminating item. As the value of the a parameter decreased, so did power. This 

was observed across all conditions by all three procedures. In an effort to better 

understand the relationship between item discrimination and DIF detection, a follow-up 

study could investigate if highly discriminating items have higher Type I error rates. 

The unanticipated consequence of having focal group sizes extremely small, 20 

and below, resulted in an inability to compute effect size measures for some conditions 

when the MH procedure was used. Although these items were flagged as having 

statistically significant DIF, no other information could be extracted.  

Future research could involve additional design characteristics that might result in 

better power from DIF detection methods. Specifically, a longer test may counteract the 

problem of the small focal group sizes and increase the performance of not just MH but 

LR, and the ET as well. Increasing the size of the reference group may also benefit all 

three methods.  

This study has provided a description and a simulated demonstration of DIF 

detection by three categorical data analysis procedures. The findings compliment the 

work previously done by Parshall and Miller (1995) as well as the work done by 

Swaminathan and Rogers (1990) regarding the strength of MH when compared to the 

exact test and logistic regression when compared to MH. This study compared all three 

procedures and their ability to detect DIF when conditions were extreme. None of the 

three methods performed well by demonstrating acceptable power rates. This study 

identified possible limitations of MH regarding sample size. This study also recognized 
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when logistic regression was more effective than MH. The findings from this study are 

preliminary and would benefit from testing with real or pseudo-real data.  
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APPENDIXES 

APPENDIX A 

Hypergeometric Distribution and Mantel-Haenszel Sample Calculation  

 

 

Given the following 2 x 2 contingency table:  

 

 Item Correct Item Incorrect  Row Total 

Reference Group yj xj mj 

Focal Group yj’ xj’ mj‘ 

Column Total nj nj’ Nj 

 

 

 Correct Response Incorrect Response Total 

Reference Group 6 2 8 

Focal Group 4 4 8 

Total 10 6 16 
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The hypergeometric function below                       
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The Mantel-Haenszel statistic below 
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APPENDIX B 

Stat Exact SAS Code 

 

%macro ss; 

%do i=1 %to 200; 

proc printto log='c:\phd documents\se\logstuff2.txt' new; 

proc printto print='c:\phd documents\se\outputstuff2.txt' new; 

data run1111; (data file containing values for a particular condition) 

infile "c:\phd documents\datafiles2\2run3117\gphr&i..txt"; 

input r1-r10 theta foc; 

score = r1 + r2 + r3 + r4 + r5 + r6 + r7 + r8 + r9 + r10;  

data rd;  

set run1111; 

(create thick matching categories) 

if score >= 0 and score <= 2 then tally = 0; if score = 3 then tally = 3; 

if score = 4 then tally = 4; 

if score = 5 then tally = 5; 

if score = 6 then tally = 6; 

if score >= 7 and score <= 10 then tally = 7; 

proc sort; 

by tally;  
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run; 

 

(create a table for each score category)  

proc stratify data=rd out=d1 sc=3 disp_acc=5;  

ho/ex; ro foc; co r1; stratum tally; 

proc stratify data=rd out=d2 sc=3 disp_acc=5;  

ho/ex; ro foc; co r2; stratum tally; 

proc stratify data=rd out=d3 sc=3 disp_acc=5;  

ho/ex; ro foc; co r3; stratum tally; 

proc stratify data=rd out=d4 sc=3 disp_acc=5;  

ho/ex; ro foc; co r4; stratum tally; 

proc stratify data=rd out=d5 sc=3 disp_acc=5;  

ho/ex; ro foc; co r5; stratum tally; 

proc stratify data=rd out=d6 sc=3 disp_acc=5;  

ho/ex; ro foc; co r6; stratum tally; 

proc stratify data=rd out=d7 sc=3 disp_acc=5;  

ho/ex; ro foc; co r7; stratum tally; 

proc stratify data=rd out=d8 sc=3 disp_acc=5;  

ho/ex; ro foc; co r8; stratum tally; 

*proc print data=d8; 

proc stratify data=rd out=d9 sc=3 disp_acc=5;  

ho/ex; ro foc; co r9; stratum tally; 

*proc print data=d9; 
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proc stratify data=rd out=d10 sc=3 disp_acc=5;  

ho/ex; ro foc; co r10; stratum tally; 

 

data all; set d1 d2 d3 d4 d5 d6 d7 d8 d9 d10;  

rep=&i;  

keep col value rep; 

if item = 'XCTPVAL2'; ( identifies what value from the tables is needed) 

proc print data=all; 

proc append base=final data=all; 

run; 

%end; 

%mend ss; 

%ss; 

data theend; set final; 

file 'c:\phd documents\se\serun3117.txt'; 

format VALUE 7.5; 

put col value rep;  

run; 
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APPENDIX C 

Mantel-Haenszel SAS Code 

 

OPTIONS PAGENO=1 LINESIZE=100 CENTER FORMDLIM='='; 

%macro ss; 

%do i=1 %to 200;  

proc printto log='c:\PhD Documents\mh\LOGSTUFF2.txt' new; 

PROC PRINTTO PRINT='C:\PhD Documents\mh\OUTPUTSTUFF2.TXT' NEW; 

DATA TEMP; 

infile "c:\PhD Documents\datafiles2\2run3417\gphr&i..txt"; 

input r1-r10 theta foc; 

if foc=1 then newfoc=0; (identification of reference and focal group) 

 else newfoc=1; 

score = r1 + r2 + r3 + r4 + r5 + r6 + r7 + r8 + r9 + r10; 

DATA EQUINT; 

SET TEMP; 

IF score >= 0 AND score =< 2 THEN tally = 0; (create thick matching) 

IF score =3 THEN tally = 3; 

IF score =4 then tally =4; 

if score =5 then tally = 5; 
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if score =6 then tally = 6; 

if score >= 7 and score <= 10 then tally = 7; 

RUN; 

/***************  FINISHED EFFECT SIZE CALCULATION ******************/ 

ods output cmh=gmh; 

ods output commonrelrisks=dir; 

ods listing; 

proc freq; 

tables tally*newfoc*R1-R10/CMH ; 

run; 

data dd; set gmh;  

if statistic=3; 

proc sort; by table; 

data ee; set dir; 

if StudyType='Case-Control'; 

proc sort; by table; 

data comb; merge dd ee; by table; 

rep=&i; 

PROC APPEND BASE=ALL DATA=comb; 

run; 

%end; 

%mend ss; 

%ss; 
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data keepitall ; set all; 

file 'c:\PhD Documents\mh\mhrun3417.txt'; 

put table value prob rep; 

data sig; set keepitall; 

if prob lt .05 ;  

proc print data=sig; run; 

proc print data=keepitall; run;  

proc freq; tables table; run; 
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APPENDIX D 

Logistic Regression SAS Code 

 

%macro ss; 

%do i=1 %to 200; 

proc printto log='c:\PhD Documents\log_1dif\logstuff2try.txt' new; 

proc printto print='c:\PhD Documents\log_1dif\outputstuff2try.txt' new; 

data run1111; 

infile "c:\PhD Documents\datafiles2\2run1417\gphr&I..txt"; 

input R1-R10 THETA FOC; 

SCORE = R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8 + R9 + R10; 

if foc=1 then newfoc=0; 

 else newfoc=1; 

run; 

DATA D2; 

SET RUN1111;  

IF SCORE >= 0 AND SCORE <= 2 THEN TALLY = 0; 

IF SCORE =3 THEN TALLY = 3; 

IF SCORE =4 THEN TALLY = 4; 

IF SCORE =5 THEN TALLY = 5; 

IF SCORE =6 THEN TALLY = 6; 
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IF SCORE >= 7 AND SCORE <= 10 THEN TALLY = 7; 

PROC SORT; 

BY TALLY; 

RUN; 

ods output globaltests=log11; 

PROC logistic data=d2; 

model R1 = tally /rsq; 

data logsig11; set log11; 

 if test='Likelihood Ratio'; 

ods output globaltests=log12; 

ods output rsquare=rslog;  

PROC logistic data=d2; 

model R1 = tally newfoc/rsq; 

data logsig12; set log12; 

 if test='Likelihood Ratio'; 

data logsigcomb11; set logsig11 ; 

 chi1=chisq; 

 df1=df; 

data logsigcomb12; set logsig12 ; 

 chi2=chisq; 

 df2=df; 

(Use of the R
2 

value to categorize strong, moderate, or weak DIF) 

data comb1; set logsigcomb11; set logsigcomb12; set rslog; 
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 keep chi1 df1 chi2 df2 dfn chi chip rsquare rep; 

 chi=chi2-chi1; 

 dfn=df2-df1; 

 chip=1-(probchi (chi, dfn)); 

 rsquare=cvalue1; 

 rep=&i; 

proc append base=all data=comb1; 

run; 

run; 

%end; 

%mend ss; 

%ss; 

data final; set all;  

  if chip lt .01 then sig=1; 

   else sig=0; 

 if sig=1 & rsquare ge .130 then sigprac=1; 

  else sigprac=0; 

 proc freq; tables sig sigprac; run; 

data d3; set final; 

file "c:\PhD Documents\log_1dif\logrun1417try.txt"; 

put chi1 df1 chi2 df2 dfn chi chip rsquare rep sig sigprac; 

run; 
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