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EMPIRICAL LIKELIHOOD-BASED NONPARAMETRIC INFERENCE FOR 

THE DIFFERENCE BETWEEN TWO PARTIAL AUCS 
 
 

by 
 

Yan Yuan 
 

Under the direction of Gengsheng Qin 
 

ABSTRACT 

Compare the accuracy of two continuous-scale tests is increasing important when a new 

test is developed. The traditional approach that compares the entire areas under two 

Receiver Operating Characteristic (ROC) curves is not sensitive when two ROC curves 

cross each other. A better approach to compare the accuracy of two diagnostic tests is to 

compare the areas under two ROC curves (AUCs) in the interested specificity interval.  

In this thesis, we have proposed bootstrap and empirical likelihood (EL) approach for 

inference of the difference between two partial AUCs. The empirical likelihood ratio for 

the difference between two partial AUCs is defined and its limiting distribution is shown 

to be a scaled chi-square distribution. The EL based confidence intervals for the 

difference between two partial AUCs are obtained. Additionally we have conducted 

simulation studies to compare four proposed EL and bootstrap based intervals. 
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CHAPTER I 

INTRODUCTION 

 
 The accuracy of a binary diagnostic test can be measured by its specificity and 

sensitivity. The sensitivity or true positive rate (TPR) of the test is the proportion of 

diseased patients who test positive. The specificity or true negative rate (TNR) of the test 

is the proportion of non-diseased patients who test negative. 

 When the outcome of a diagnostic test is continuous, a cut-off point for the 

positive of disease needs to be chosen to compute specificity and sensitivity of the test. 

Let Y and X be the results of a continuous-scale test for a diseased and a non-diseased 

subject with cumulative distribution function G and F, respectively. For a given cut-off 

point c, the sensitivity and specificity of the test are defined as  

)(1)( cGcYPSe −=≥= ;           )()( cFcXPSp =≤=  

respectively. When specificity is 1-p, the corresponding sensitivity of the test is 

))1((1)( 1 pFGpR −−= −  ,  where 1F −  is the inverse function of F . 

The receiver operating characteristic (ROC) curve,  denoted by R (p),  is the plot 

of sensitivity against the false positive rate (FPR or 1- specificity ) as the cut-off point 

runs through the whole range of possible test values. In fact, the non-diseased population 

is unknown, and the optimal cut-off point is unknown too. For a continuous-scale 

diagnostic test, the area under the ROC curve (AUC), defined as  
1

0
( )R p dpδ = ∫  , is 

commonly used to summarize the accuracy of the diagnostic test across all the possible 
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cut-off points. The larger is the AUC, the better the diagnostic test will be. Now, the 

AUC is a very popular tool in diagnostic medicine.  

However, the AUC has several limitations that may make it less useful for 

continuous diagnostic tests (Hilden, 1991). When two ROC curves cross, the two 

diagnostic tests can have similar AUC even though one test has higher sensitivity for 

certain specificities while the other test has better sensitivity for other specificities. On 

the other hand, in diagnostic testing, it is critical to maintain a high sensitivity in order 

not to miss detecting subjects with “disease” and the interest would be in the region of 

ROC curve corresponding only to acceptable high sensitivities. For cancer screening, 

only the lower tail of the ROC curve is of interest because the FPR must be very small to 

be acceptable (Lilienfeld, 1974). For these reasons, the partial AUC (pAUC) has been 

proposed as an alternative measure to the full AUC. When using the pAUC, one 

considers only those regions of the ROC space where data have been observed, or which 

correspond to clinical relevant values of sensitivity or specificity. The pAUC over the 

interval ),( 10 pp of false positive rates, denoted by 
10 pp

δ , is 

∫=
1

010
)(

p

ppp
dppRδ        for 10 10 ≤<≤ pp . 

It can be described as the cumulative value of sensitivity for all possible values of the 

false positive rates in the interval ),( 10 pp  . 

Let 1X , 2X , …, mX  be the test results from a random sample of non-diseased 

population with distribution function F;  let 1Y , 2Y ,…, nY  be the test results from a 

random sample of diseased population with distribution function G. Dodd and Pepe 
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(2003) proposed the following nonparametric estimator for the pAUC.  When the 

quantiles  )1(1
ii pFq −= −  (i=0, 1)  are known,  the pAUC can be estimated by 

( )),()(1~
01

1110
qqXIXYI

mn ii

n

j
j

m

i
pp

∈≥= ∑∑
==

δ . 

When the quantile iq ’s are unknown, the pAUC can be estimated by 

( ))ˆ,ˆ()(1ˆ
01

1110
qqXIXYI

mn ii

n

j
j

m

i
pp

∈≥= ∑∑
==

δ  

where  )1(ˆˆ 1
ii pFq −= −  (i=0,1) and F̂   is the empirical distribution of F . 

Many approaches have been proposed for constructing a confidence interval for 

the full or partial AUC.  McClish (1989), Thompson and Zucchini (1989), and Jiang, 

Metz, and Nishikawa (1996) proposed parametric methods for the interval estimation of 

the pAUC using the bi-normal model. But Walsh (1997) found that the inferences for the 

pAUC are sensitive to the parametric model assumption. Wieand et al (1989) proposed a 

generalized nonparametric method for the inference of both the full and the partial AUC. 

However, their method is involved in density and distribution function estimations and 

mathematically too complicated to be well applied in practice. Qin and Zhou (2006) 

proposed an Empirical Likelihood (EL) based approach for the inference on the full AUC 

and recommended the use of an EL-based approach when the underlying distributions for 

diseased and non-diseased populations are unknown. Qin, Jin and Zhou (2006) developed 

bootstrap and EL-based inference for pAUC and did extensive simulation studies to 

compare three nonparametric confidence intervals (Normal Approximation, Bootstrap, 

and Empirical Likelihood) for the pAUC. They also recommended the use of EL-based 
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approach for pAUC when the underlying distributions for diseased and non-diseased 

populations are unknown. 

Comparing two continuous-scale diagnostic tests is increasingly important when a 

new test is developed and marketed (Delong 1988). How can we know which diagnostic 

test is better? Investigators often compare the validity of two tests based on the estimated 

areas under the respective ROC curves. However, the traditional way of comparing entire 

areas under two ROC curves is not sensitive when two ROC curves cross each other 

(Zhang et al., 2002).  In this thesis, we propose methods to compare the partial area under 

the curve within a specific range of specificity for two ROC curves, non-parametric 

methods based on EL and bootstrap have been developed.  

This thesis is organized as follows:  In Chapter II, we propose two bootstrap 

confidence intervals for the difference between two partial AUCs. In Chapter III, we 

propose the EL-based intervals for the difference between two partial AUCs. In Chapter 

IV, we conduct simulation study to evaluate the performances of these intervals. In 

Chapter V, we analyze Dermatoscope Example to illustrate the proposed intervals. 

Finally, the conclusions are discussed in Chapter VI. 
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CHAPTER II 

Bootstrap Confidence Interval for the Difference between Two partial AUCS 

 
 Consider two diagnostic tests kT (k=1, 2). Both tests yield continuous 

measurements and are performed on the same m non-diseased and n diseased cases. Let 

1kX  , 2kX … kmX  be i.i.d bivariate test results from a non-diseased population with joint 

distribution function ),( 21 xxF , and let 1kY , 2kY ….., knY   i.i.d bivariate test results from a 

diseased population with joint distribution function ),( 21 yyG . Denote the marginal 

distribution functions of kiX  and kjY  by kF   and kG , respectively. The pAUC of test 

kT (k=1, 2) over the interval ),( 10 pp  of false positive rates, denoted by 
0 1

( )k
p p

δ , is 

1

0 1 0

( ) ( )
pk

kp p p
R p dpδ = ∫        for 10 10 ≤<≤ pp , 

where 1( ) 1 ( (1 ))k k kR p G F p−= − −  is the ROC curve of test kT (k=1, 2) . The difference 

between two pAUCS is 
10 ppΔ  = 

0 01 1

(2) (1)
p p p p

δ δ− . Our goal is to construct confidence interval 

for 
10 ppΔ  based on test results kiX ’s and kjY ’s. 

 
2.1 Normal Approximation Method  
  

For one diagnostic test, Let { 1Y , 2Y , …, nY } and { 1X  , 2X ,…, mX } be the results 

of a continuous-scale test for a diseased and a non-diseased subject with cumulative 

distribution function F and G.  Dodd and Pepe (2003) defined the restricted placement 

value of X as )),(())(1()( 01 qqXIxGXV ∈−=  when assume the quantiles 1q and  0q  are 

known.  Let )(1)(ˆ
1

yYI
n

yG
n

j
j ≤= ∑

=

 be the empirical distribution of G, and 
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)),(())(ˆ1(~
01 qqXIXGV iii ∈−= , i =1, 2, …, m.  Then, 

10

~
ppδ = ∑

=

m

i
iV

m 1

~1   is the mean of m 

‘sample’ restricted placement value sVi '
~ .  Noticing that  

10

~
ppδ is a two-sample U-statistic, 

it follows from the asymptotic normality for U-statistic (Lehmann, 1998) that 

−∑
=

m

i
i

mn

V
m 1

~(1
σ

)
10 ppδ ⎯→⎯L N (0, 1), 

Where     

2 2 2
1 0

1 1
mn m n

σ σ σ= + ,    2
1σ =Var[V(X)],   2

0σ =Var [F (min(Y, 0q ))]. 

Since both 1q , 0q are unknown, iV~  is still unknown. The above normal approximation 

cannot be directly used to produce a confidence interval for the pAUC. Therefore Qin, Jin 

and Zhou (2007) introduced a bootstrap method to produce a confidence interval for 

pAUC.   

 For two diagnostic tests kT (k=1, 2), we can use 
0 1

ˆ
p pΔ  =  

0 01 1

(2) (1)ˆ ˆ
p p p p

δ δ−  to estimate 

10 ppΔ ,     where     ( ))ˆ,ˆ()(1ˆ
01

11

)(
10 kkkiki

n

j
kj

m

i

k
pp qqXIXYI

mn
∈≥= ∑∑

==

δ ,      1ˆˆ (1 )kl k lq F p−= −           

(l = 0, 1) ,  and k̂F   is the empirical distribution of kF .  It can be proved that  

 ( )0 1 0 1
ˆ

p p p pm n+ Δ −Δ ⎯→⎯L N (0, 
0 1

2
p pσ ), 

where 
0 1

2
p pσ  is the asymptotic variance  of  

0 1
ˆ

p pΔ . Since 
0 1

2
p pσ  is an unknown function of 

kF , kG , 1
kF −  and 1

kG− ,  the estimation of 
0 1

2
p pσ  involves in complex density and quantile 

estimation. This normal approximation cannot be directly used to produce a confidence 

interval for the
10 ppΔ . In next subsection, we will extend the method used in Qin, Jin and 
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Zhou (2006) to construct confidence intervals for the difference between two partial 

AUCS. 

2.2 Bootstrap Method 

 Bootstrap method is a popular non-parametric method for constructing confidence 

intervals of unknown parameter; it can be applied to very complex problems. In this 

chapter we will propose use bootstrap method to construct confidence interval for the 

difference between two partial AUCS.   

 We draw a bootstrap resample { *
1kX , *

2kX ,…, *
kmX } of size m with replacement 

from{ 1kX  , 2kX , …, kmX } and  a separate bootstrap resample { *
1kY , *

2kY , …, *
knY }  of size 

n with replacement  from { 1kY , 2kY , …, knY }. The partial AUC can be estimated by 

( ))ˆ,ˆ()(1ˆ *
0

*
1

**

1

*

1

)*(
10 kkkiki

n

j
kj

m

i

k
pp qqXIXYI

mn
∈≥= ∑∑

==

δ  ,    k=1, 2, 

where )1(ˆˆ *1*
lkkl pFq −= −  (l = 0, 1)  is the (1 lp− )-th sample quantile  based on  bootstrap 

resample { *
1kX , *

2kX ,…, *
kmX }. Then the bootstrap estimate for the difference of two 

partial AUCs can be calculated as 

=Δ*
10

ˆ
pp

)*1()*2(
1010

ˆˆ
pppp δδ − . 

 After B repetitions of above process, B bootstrap copies of *
10

ˆ
ppΔ  are obtained 

{ *
)(10

ˆ
bppΔ : b=1, 2, …, B}. 

The bootstrap estimator for the variance of 
0 1

ˆ
p pΔ is given by 

2*

1

*
)(

* )ˆ(
1

1
1010 pp

B

b
bppB

V Δ−Δ
−

= ∑
=

, 
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where ∑
=

Δ=Δ
B

b
bpppp B 1

*
)(

*
1010

ˆ1 . 

 Two bootstrap (1-α )100% confidence intervals for 
10 ppΔ  can be proposed based 

on the bootstrap variance estimator *V .  

 First one, called BS interval is defined as follows: 

( *
2/1

*
10

Vzpp α−−Δ ,  *
2/1

*
10

Vzpp α−+Δ ). 

 Second one, called BT interval is given by 

( *
2/110

ˆ Vzpp α−−Δ ,  *
2/110

ˆ Vzpp α−+Δ ). 
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CHAPTER III 

Empirical Likelihood Based Confidence Interval for 

The difference between two partial AUCs 

 
 In this chapter, we will use empirical likelihood method to construct the 

confidence interval for the difference between two partial AUCs. 

Empirical likelihood (EL) (Owen, 1990, 2001) also is a popular non-parametric 

method traditionally used for providing confidence intervals. The EL method has many 

advantages over other non-parametric methods. For example, it has better small sample 

performance than approaches based on normal approximation, it studentizes internally, 

thereby eliminating the need for a pivot. But the applications of EL method to the ROC 

study are relatively few. The main challenge of developing the EL-based theory for the 

difference between two partial AUCs is the standard EL method can’t be applied  directly 

when the underlying distributions are unknown (Qin and Zhou 2006) and the empirical 

log-likelihood ratio for the partial AUC is a sum of non-independent random variables 

(Qin, Jin and Zhou 2006). Hence, the standard EL theory cannot be directly applied in the 

partial AUC setting. 

For test value kX  from a “non-diseased” subject, Dodd and Pepe (2003) defined 

the restricted placement value of kX  as  

)),(())(1()( 21 kkkkkkk qqXIXGXV ∈−= , k=1, 2, 

where 1(1 )kl k lq F p−= − , l  = 1,  2. 

 When the quantiles are unknown, we can use 

))ˆ,ˆ(())(ˆ1()(ˆ
21 kkkkkkk qqXIXGXV ∈−= , k=1, 2, 
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where 1ˆˆ (1 )kl k lq F p−= − ,  l = 1, 2. 

 kV  can be interpreted as the restricted placement value of a given “non-diseased” 

test value kX , in the survival function of the results of “diseased”. It is evident that 

)},(,{))(( 21 kkkkkkk qqXXYpXVE ∈>= = )( 1,0 pppAUCk = )(
10

k
ppδ  

Therefore, 

=Δ
10 pp

)1()2(
1010 pppp δδ − = ))()(( 1122 XVXVE − . 

Based on this relationship between the difference between two partial AUCs and the 

restricted placement values 1 1( )V X  and 2 2( )V X ,  the profile empirical likelihood for 
10 ppΔ  

can be defined as 

,1:sup{)(
112,1

10
==Δ ∑∏∏

===

n

j
ki

m

i
kj

k
pp ppL  −∑

=
ki

m

i
ki Vp ˆ(

1
))(

10

k
ppδ , −∑

=
i

m

i
iVp 2

1
2

ˆ
i

m

i
iVp 1

1
1

ˆ∑
=

= }
10 ppΔ , 

where kiV̂ = )(ˆ
kik XV , i=1, 2, …, m,  k=1, 2. 

 Then the corresponding empirical log-likelihood ratio (ELR) for 
10 ppΔ  is  

[2)(
10
=Δ ppl −−∑

=
i

m

i

V1
1

ˆ(21log( λ )))1(
10 ppδ  + −+∑

=
i

m

i

V2
1

ˆ(21log( λ ))])2(
10 ppδ , 

where λ  and )(
10

k
ppδ  (k=1, 2) are the solutions of the following equations: 

           0
)ˆ(21

ˆ1
1

)1(
1

)1(
1

10

10 =
−−

−
∑
=

m

i ppi

ppi

V

V
m δλ

δ
           (1)                                     

          0
)ˆ(21

ˆ1
1

)2(
2

)2(
2

10

10 =
−+

−
∑
=

m

i ppi

ppi

V

V
m δλ

δ
            (2)                                      

         −
−+

∑
=

m

i ppi

i

V
V

m 1
)2(

2

2

)ˆ(21

ˆ1

10
δλ 10

10
1

)1(
1

1

)ˆ(21

ˆ1
pp

m

i ppi

i

V
V

m
Δ=

−−
∑
= δλ

   (3)                                     
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Theorem 3.1:  If  
10 ppΔ  is the true value of the difference between two partial AUCs, and 

,limm n
m
n

ρ→∞ =   is a constant, then the limiting distribution of )(
10 ppl Δ  is a scaled chi-

square distribution with one degree of freedom.  

)(
10 ppC Δ )(

10 ppl Δ 2
1χ⎯→⎯L , 

where )(
10 ppC Δ = 0 1 0 1

0 1

(1) 2 (2) 2

2

( ) /
/( )

p p p p

p p

m
m n

σ σ
σ

+

+
,  

0 1

( ) 2 [ ( )]k
p p k kVar V Xσ = ,  k = 1, 2. 

Using Theorem 3.1, two empirical and bootstrap based intervals for the difference 

between two partial AUCs can be constructed as follows: 

  The first hybrid empirical and bootstrap interval (EL) is defined as 

0 1 0 1
( ) { :p p p pRα Δ = Δ  )(ˆ

10 ppC Δ )(
10 ppl Δ )1(2

1 αχ −≤ }, 

where )1(2
1 αχ −  is the (1-α )-th quantile of the chi-square distribution 2

1χ ,  )(ˆ
10 ppC Δ  is 

an estimate for )(
10 ppC Δ :  

)(ˆ
10 ppC Δ = *

2)2(2)1( /)ˆˆ(
1010

V
mpppp σσ +

,     2

11

2)( )ˆ1ˆ(
1

1ˆ
10 ∑∑

==

−
−

=
m

i
ki

m

i
ki

k
pp V

m
V

m
σ , k=1, 2, 

and *V  is the bootstrap variance estimate defined in chapter II. 

 
0 1

( )p pRα Δ  is an approximate confidence intervals for the difference between two 

partial AUCs with asymptotically correct coverage probability 1-α , i.e.,  

∈Δ
10

( ppP  
0 1

( )p pRα Δ ) = 1-α + )1(ο . 
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 We can solve the following equations to get the lower and upper bounds of the 

confidence interval for the difference between the two partial AUCs: 

0
)ˆ(21

ˆ1
1

)1(
1

)1(
1

10

10 =
−−

−
∑
=

m

i ppi

ppi

V

V
m δλ

δ
                                                                                  (1) 

         0
)ˆ(21

ˆ1
1

)2(
2

)2(
2

10

10 =
−+

−
∑
=

m

i ppi

ppi

V

V
m δλ

δ
                                                                                  (2) 

        −
−+

∑
=

m

i ppi

i

V
V

m 1
)2(

2

2

)ˆ(21

ˆ1

10
δλ 10

10
1

)1(
1

1

)ˆ(21

ˆ1
pp

m

i ppi

i

V
V

m
Δ=

−−
∑
= δλ

                                  (3) 

        )(ˆ
10 ppC Δ )(

10 ppl Δ )1(2
1 αχ −=                                                                              (4) 

In these four equations, λ  and )(
10

k
ppδ  (k=1, 2) and 

10 ppΔ are unknown and can be solved.  

The 
10 ppΔ will have two solutions. The smaller one is the lower bound of the EL interval 

and larger one is the upper bound of the EL interval.  

 

 The second hybrid empirical and bootstrap interval (HBEL) is given by 

0 1 0 1

* ( ) { :   p p p pRα Δ = Δ )(ˆ
10

*
ppC Δ )(

10 ppl Δ )1(2
1 αχ −≤ }, 

where )(ˆ
10

*
ppC Δ = 0 1 0 1

*(1) 2 *(2) 2

*

ˆ ˆ( ) /p p p p m
V

σ σ+
,  

0 1

*( ) 2ˆ k
p pσ  is the mean of B bootstrap copies of 

0 1

( ) 2ˆ k
p pσ  ( k=1,2), and *V  is the bootstrap variance estimate defined in chapter II. 

 Similarly, 
0 1

*( )p pRα Δ  is an approximate confidence intervals for the difference 

between two partial AUCs with asymptotically correct coverage probability 1-α , i.e.,  

∈Δ
10

( ppP  
0 1

*( )p pRα Δ ) = 1-α + )1(ο . 
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The lower and upper bound of HBEL interval can be obtained by solving the following 

equations: 

0
)ˆ(21

ˆ1
1

)1(
1

)1(
1

10

10 =
−−

−
∑
=

m

i ppi

ppi

V

V
m δλ

δ
                                                                                  (5) 

0
)ˆ(21

ˆ1
1

)2(
2

)2(
2

10

10 =
−+

−
∑
=

m

i ppi

ppi

V

V
m δλ

δ
                                                                                  (6) 

−
−+

∑
=

m

i ppi

i

V
V

m 1
)2(

2

2

)ˆ(21

ˆ1

10
δλ 10

10
1

)1(
1

1

)ˆ(21

ˆ1
pp

m

i ppi

i

V
V

m
Δ=

−−
∑
= δλ

                                  (7) 

)(ˆ
10

*
ppC Δ )(

10 ppl Δ )1(2
1 αχ −=                                                                             (8) 
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CHAPTER IV 

Simulation Study 

 In this chapter, we conduct a simulation study to evaluate coverage accuracy and 

interval length of the newly proposed four intervals for the difference 
10 ppΔ of two 

pAUCs. In the study, the difference 
10 ppΔ  between two pAUCs is taken to be 0 and 0.2. 

We generate 1000 random samples of size n from ),( 21 yyG  for test responses of 

diseased patients, and another set of independent random samples of size m from 

),( 21 xxF  for test responses of non-diseased patients.  

The distribution ),( 21 xxF  is chosen to be a bivariate normal distribution having 

means 0)( 1 =XE , 0)( 2 =XE  with a common standard deviation 1 and correlation ρ . 

The distribution ),( 21 yyG  is chosen to be a bivariate normal distribution having 

means 11 )( μ=YE , 22 )( μ=YE  with a common standard deviation 2 and correlation ρ . 1μ  

and 2μ  are calculated by solving the following equations 

1

0 1 0

( ) ( )
pk

kp p p
R p dpδ = ∫   with 1( ) 1 ( (1 ))k k kR p G F p−= − − ,  k = 1, 2. 

When 
10 ppΔ  = 0, we choose three groups of  

0 01 1

(1) (2)ˆ ˆ( , )
p p p p

δ δ  to calculate three groups of 

( 1μ , 2μ )   and generate random samples from the ),( 21 yyG : 

(i)   (2) (1)
(0,0.4) (0,0.4) 0.2δ δ= =   with ),( 10 pp  = (0, 0.4), 

(ii)  (2) (1)
(0,0.7) (0,0.7) 0.45δ δ= =  with ),( 10 pp  = (0, 0.7), 

(iii) (2) (1)
(0.05,0.50) (0.05,0.50) 0.26δ δ= =   with ),( 10 pp  = (0.05, 0.50). 
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When 
10 ppΔ  = 0.2, we also choose three groups of  

0 01 1

(1) (2)ˆ ˆ( , )
p p p p

δ δ  to calculate three groups 

of ( 1μ , 2μ )   and generate random samples from the ),( 21 yyG : 

(i)  (2) (1)
(0,0.4) (0,0.4)0.37, 0.17δ δ= =  with ),( 10 pp  = (0, 0.4), 

(ii) (2) (1)
(0,0.7) (0,0.7)0.61, 0.41δ δ= =  with ),( 10 pp  = (0, 0.7), 

(iii) (2) (1)
(0.05,0.50) (0.05,0.50)0.39, 0.19δ δ= =  with ),( 10 pp  = (0.05, 0.50). 

In the bootstrap step, we draw B = 150 bootstrap re-samples from the original samples. 

We construct both 90% and 95% confidence intervals for 
10 ppΔ . The results of the 

simulation study are shown in Table I to Table VIII. From these tables, the following 

observations were made. 

 (1) When the correlation ρ = 0 and 
10 ppΔ = 0, the four proposed intervals have 

similar coverage probabilities but the hybrid empirical likelihood and bootstrap intervals 

(EL and HBEL) have slightly shorter interval length.  

 (2) When 
10 ppΔ > 0, all the intervals over-cover the true difference between two 

pAUCs when sample sizes are small. As the sample sizes increase, the coverage 

probabilities of all the intervals approach to the nominal level. Although in most time all 

the interval have similar coverage probabilities, the EL and HBEL intervals have much 

shorter interval length than bootstrap (BS and BT) intervals.   

 (3) When the correlation is positive ( ρ  = 0.3), bigger sample sizes (m, n ≥  150) 

are needed to get better coverage accuracy for all the intervals. 

 In summary, the simulation study indicates that the hybrid empirical likelihood 

and bootstrap based intervals perform better than the bootstrap intervals when two partial 

AUCs are different. When there is no difference between two partial AUCs, the four 
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proposed intervals have similar performance. Therefore, we recommend the use of hybrid 

empirical likelihood and bootstrap method for construction of confidence interval of 

difference between two pAUCs when the underlying distributions for diseased and non-

diseased populations are unknown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                                             

 17

CHAPTER V 

Dermatoscope Example 

 

 Malignant melanoma (MM) is one of the most deadly kinds of skin disease. 

Melanomas of less than 1mm are not likely to have spread to the lymph nodes or to other 

parts of the body, called early stage; they have a very good chance of cure. The thinner 

the melanoma, the better chance of a complete cure. Early diagnosis of malignant 

melanoma is essential for cure.   

Dermatoscopy is a hand- held instrument for skin surface microscopy at 10 times 

magnification and is a noninvasive diagnostic technique for the early diagnosis of 

melanoma and the evaluation of other pigmented and non-pigmented lesions on the skin 

that are not as well seen with the unaided eye [www.medterms.com].  Stolz et al (1994) 

studied the accuracy of clinical evaluations with or without the aid of Dermatoscopy in 

detecting MM by using the ABCD rule (Asymmetry, irregular border, different colors, 

and Diameter larger than 6mm). In this study, two tests were applied for detecting MM; 

the first test is the clinical assessment without the aid of dermatoscopy, and the second 

test is the clinical assessment with the aid of dermatoscopy. The data set we used here 

includes 21 patients with MM and 51 patients with benign melanocytic lesions; all 

patients have both tests results. The objective of this study is to find out whether the aid 

of dermatoscopy can improve for detecting MM. We estimate the difference of two 

pAUCs of the two tests and construct confidence intervals for the difference by using the 

proposed methods. The 90% and 95% confidence intervals for the difference between 

two pAUCs over three intervals of FPR are shown in Table IX and Table X.  
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 The estimates of the differences between two pAUCs over the three intervals (0, 

0.4), (0, 0.7) and (0.05, 0.50) of FPR for the two tests are all close to 0.  Also, all the 

confidence intervals for the differences contain zero. Therefore, we conclude that there is 

no significant advantage in adopting the clinical assessment with the aid of dermatoscopy 

in detecting MM.  The same conclusion has been obtained in Qin, Hsu and Zhou (2006) 

where they compared those two tests by using the sensitivities at a fixed level of 

specificity.  
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CHAPTER VI 

Discussion and Conclusion 

 
 Comparing the accuracy of two continuous-scale tests is increasingly important 

when a new test is developed and marketed. There are many ways to do such a 

comparison. For example, we can compare the sensitivities at a fixed common specificity 

or we can compare the areas under the ROC curves. But traditional ways of comparing 

entire areas under two ROC curves are not sensitive when two ROC curves cross each 

other. Comparing the areas under two ROC curves on the interested FPR interval is a 

more appropriate way to compare the accuracy of two diagnostic tests. In this thesis, we 

have proposed two bootstrap based confidence intervals (BS and BT) and two hybrid 

empirical likelihood and bootstrap confidence intervals (EL and HBEL).  The simulation 

study indicates that two hybrid empirical likelihood and bootstrap intervals performed 

better than the bootstrap intervals in most cases, especially when there is a difference 

between two pAUCs. The proposed hybrid empirical likelihood and bootstrap based 

method combines the power of both bootstrap and empirical likelihood methods. The 

unknown scale constant in the empirical likelihood theorem can be conveniently and 

accurately estimated by using bootstrap method. The confidence intervals can be 

constructed by using the empirical likelihood theorem. Based on this study, we 

recommend the use of the proposed hybrid empirical likelihood and bootstrap confidence 

intervals for the difference between two partial AUCs when the underlying distributions 

for diseased and non-diseased populations are unknown.  
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APPENDIX  

 

APPENDIX A: Simulation Tables  
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Table I: Level of 95 per cent confidence interval for 
10 ppΔ . Bivariate normal distribution with 0=ρ . 

 
( 0p , 1p )=(0-0.4) ( 0p , 1p )=(0-0.7) ( 0p , 1p )=(0.05-0.5) True

10 ppΔ  
Sample   size 
      (m,n)           

Method 

Coverage 
probability 

Length Coverage 
probability 

Length Coverage 
probability 

 Length 

(20, 20) 
 

HBEL 
EL 
BT 
BS 
 

0.965 
0.977 
0.981 
0.976 

0.2810  
0.2959  
0.2996 
0.2996 

0.963  
0.975  
0.971  
0.963 

0.4118 
0.4099 
0.4343 
0.4343 

0.964 
0.970 
0.974 
0.965 

0.3203 
0.3297 
0.3372 
0.3372 

(50, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.954 
0.959 
0.963 
0.958 

0.1651 
0.1693  
0.1699 
0.1699 

0.951  
0.953  
0.950  
0.946 

0.2551 
0.2586 
0.2647 
0.2647 

0.962  
0.964  
0.968  
0.959 

0.1843 
0.1869 
0.1879 
0.1879 

(80, 80) 
 

HBEL 
EL 
BT 
BS  
 

0.944 
0.948 
0.950 
0.950 

0.1274  
0.1294 
0.1297 
0.1297 

0.942  
0.943  
0.940  
0.939 

0.1970 
0.1975 
0.1981 
0.1981 

0.950  
0.951  
0.954  
0.942 

0.1448 
0.1461 
0.1466 
0.1466 

(50, 20) HBEL 
EL 
BT 
BS  
 

0.922  
0.929  
0.942  
0.938 

0.2280 
0.2370 
0.2390 
0.2390 

0.947  
0.951  
0.945  
0.943 

0.3486 
0.3529 
0.3658 
0.3658 

0.948  
0.952  
0.955  
0.950 

0.2575 
0.2642 
0.2673 
0.2673 

    0 

(80, 50) HBEL 
EL 
BT 
BS 

0.936 
0.943 
0.947 
0.937 

0.1510 
0.1540 
0.1545 
0.1545 

0.945  
0.947  
0.945  
0.947 

0.2364 
0.2376 
0.2389 
0.2389 

0.957  
0.961  
0.963  
0.963 

0.1725  
0.1744 
0.1752 
0.1752 
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Table II: Level of 95 per cent confidence interval for 
10 ppΔ . Bivariate normal distribution with 0=ρ . 

 
( 0p , 1p )=(0-0.4) ( 0p , 1p )=(0-0.7) ( 0p , 1p )=(0.05-0.5) True

10 ppΔ  
Sample   size 
      (m,n)           

Method 

Coverage 
probability 

Length Coverage 
probability 

Length Coverage 
probability 

Length 

(20, 20) 
 

HBEL 
EL 
BT 
BS 
 

0.987 
0.987 
0.988 
0.981 

0.1277 
0.1308 
0.2693 
0.2693 

0.984  
0.976  
0.974  
0.973 

0.2342  
0.2089 
0.3906 
0.3906 

0.985  
0.988  
0.990  
0.976 

0.1528  
0.1555 
0.3084 
0.3084 

(50, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.968 
0.972 
0.971 
0.960 

0.0728 
0.0736 
0.1424 
0.1424 

0.959  
0.959  
0.958  
0.956 

0.1165 
0.1162  
0.2214 
0.2214 

0.963  
0.964  
0.964  
0.959 

0.0917 
0.0925 
0.1682 
0.1682 

(80, 80) 
 

HBEL 
EL 
BT 
BS  
 

0.955 
0.956 
0.957 
0.957 

0.0513 
0.0517 
0.1062 
0.1062 

0.956  
0.956  
0.955  
0.959 

0.0822  
0.0821 
0.1708 
0.1708 

0.965  
0.967  
0.969  
0.963 

0.0602 
0.0605 
0.1281 
0.1281 

(50, 20) HBEL 
EL 
BT 
BS  
 

0.951  
0.953  
0.957  
0.953 

0.0942 
0.0957 
0.1936 
0.1936 

0.944  
0.945  
0.941  
0.945 

0.1603 
0.1613 
0.3209 
0.3209 

0.958  
0.959  
0.961  
0.951 

0.1243 
0.1262 
0.2332 
0.2332 

  0.2 

(80, 50) HBEL 
EL 
BT 
BS 
 

0.949 
0.950 
0.953 
0.948 

0.0595  
0.0600 
0.1252 
0.1253 

0.947 
0.948  
0.945  
0.944 

0.1022  
0.1025  
0.2042 
0.2042 

0.953  
0.954  
0.956  
0.953 

0.0740 
0.0745 
0.1528 
0.1528 
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Table III: Level of 95 per cent confidence interval for 
10 ppΔ . Bivariate normal distribution with 3.0=ρ . 

 
 

( 0p , 1p )=(0-0.4) ( 0p , 1p )=(0-0.7) ( 0p , 1p )=(0.05-0.5) True

10 ppΔ  
Sample   size 
      (m,n)           

Method 

Coverage 
probability 

 Length Coverage 
probability 

Length Coverage 
probability 

Length 

(50, 50) 
 

HBEL 
EL 
BT 
BS 
 

0.976 
0.978 
0.981 
0.982 

0.1650  
0.1693 
0.1699 
0.1699 

0.981  
0.981  
0.979  
0.977 

0.2533  
0.2543  
0.2558 
0.2558 

0.982  
0.982  
0.987  
0.979 

0.1846  
0.1872 
0.1882 
0.1882 

(80, 80) 
 

HBEL 
EL 
BT 
BS  
 

0.974 
0.976 
0.978 
0.977 

0.1278 
0.1299 
0.1302 
0.1302 

0.972  
0.972  
0.972  
0.969 

0.1974 
0.1979 
0.1985 
0.1985 

0.974  
0.975  
0.975  
0.972 

0.1447 
0.1460 
0.1465 
0.1465 

(150, 150) HBEL 
EL 
BT 
BS 
 

0.971  
0.973  
0.974  
0.973 

0.0917  
0.0925  
0.0926 
0.0926 

0.980  
0.979  
0.979  
0.974 

0.1416 
0.1418 
0.1420 
0.1420 

0.977  
0.978  
0.978  
0.977 

0.1025 
0.1030 
0.1032 
0.1032 

(80, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.970 
0.974 
0.974 
0.979 

0.1516 
0.1546 
0.1551 
0.1551 

0.975  
0.975  
0.975  
0.975 

0.2355  
0.2368 
0.2378 
0.2378 

0.965  
0.969  
0.972  
0.967 

0.1730  
0.1750 
0.1757 
0.1757 

   0 

(150, 80) HBEL 
EL 
BT 
BS 
 

0.974  
0.977  
0.979  
0.978 

0.1171  
0.1185 
0.1188 
0.1188 

0.976  
0.976  
0.975  
0.972 

0.1829 
0.1836 
0.1840 
0.1840 

0.965  
0.964  
0.965  
0.963 

0.1320 
0.1330 
0.1333 
0.1333 



                                                                                                                                                             

 26

 

Table IV: Level of 95 per cent confidence interval for 
10 ppΔ . Bivariate normal distribution with 3.0=ρ . 

 
( 0p , 1p )=(0-0.4) ( 0p , 1p )=(0-0.7) ( 0p , 1p )=(0.05-0.5) True

10 ppΔ  
Sample   size 
      (m,n)           

Method 

Coverage 
probability 

Length Coverage 
probability 

Length Coverage 
probability 

Length 

(50, 50) 
 

HBEL 
EL 
BT 
BS 
 

0.982 
0.982 
0.983 
0.983 

0.0747  
0.0754 
0.1425 
0.1425 

0.981  
0.981  
0.981  
0.977 

0.1158 
0.1157 
0.2261 
0.2261 

0.983 
0.983 
0.984 
0.981 

0.0899 
0.0906 
0.1683 
0.1683 

(80, 80) 
 

HBEL 
EL 
BT 
BS  
 

0.983 
0.984 
0.984 
0.982 

0.0521  
0.0525 
0.1062 
0.1062 

0.970  
0.970  
0.970  
0.967 

0.0878 
0.0880 
0.1741 
0.1741 

0.976  
0.977 
0.978  
0.971 

0.0644 
0.0648 
0.1285 
0.1285 

(150, 150) HBEL 
EL 
BT 
BS 
 

0.963  
0.963  
0.965  
0.961 

0.0348 
0.0349 
0.0745 
0.0745 

0.972  
0.972  
0.969  
0.967 

0.0632 
0.0632 
0.1241 
0.1241 

0.968  
0.968  
0.968  
0.967 

0.0469 
0.0471 
0.0894 
0.0894 

(80, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.971 
0.972 
0.971 
0.970 

0.0595 
0.0601 
0.1250 
0.1250 

0.972  
0.973  
0.968  
0.969 

0.1088 
0.1092 
0.2186 
0.2186 

0.971 
0.973 
0.974 
0.972 

0.0742 
0.0747 
0.1520 
0.1520 

  0.2 

(150, 80) HBEL 
EL 
BT 
BS 
 

0.958  
0.961  
0.961  
0.957 

0.0475  
0.0478 
0.0941 
0.0941 

0.964  
0.965  
0.960  
0.961 

0.0828  
0.0829 
0.1616 
0.1616 

0.962  
0.963  
0.966  
0.963 

0.0590 
0.0592 
0.1143 
0.1143 

 
 



                                                                                                                                                             

 27

Table V: Level of 90 per cent confidence interval for 
10 ppΔ . Bivariate normal distribution with 0=ρ . 

 
( 0p , 1p )=(0-0.4) ( 0p , 1p )=(0-0.7) ( 0p , 1p )=(0.05-0.5) True

10 ppΔ  
Sample   size 
      (m,n)           

Method 

Coverage 
probability 

Length Coverage 
probability 

Length Coverage 
probability 

Length 

(20, 20) 
 

HBEL 
EL 
BT 
BS 
 

0.919  
0.930  
0.942  
0.934 

0.2374  
0.2506 
0.2522 
0.2522 

0.939  
0.939  
0.932  
0.925 

0.3522  
0.3529  
0.3656 
0.3656 

0.935  
0.942  
0.944  
0.933 

0.2704 
0.2792 
0.2832 
0.2832 

(50, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.922  
0.927  
0.927  
0.925 

0.1390 
0.1424 
0.1428 
0.1428 

0.912  
0.915  
0.908  
0.902 

0.2130  
0.2137  
0.2148 
0.2148 

0.925  
0.927  
0.929  
0.919 

0.1556 
0.1578 
0.1582 
0.1582 

(80, 80) 
 

HBEL 
EL 
BT 
BS  
 

0.896  
0.902  
0.906  
0.902 

0.1078  
0.1095 
0.1097 
0.1097 

0.922  
0.922  
0.922  
0.919 

0.1659  
0.1663 
0.1667 
0.1667 

0.900  
0.906  
0.907  
0.896 

0.1214 
0.1225 
0.1228 
0.1228 

(50, 20) HBEL 
EL 
BT 
BS  
 

0.880  
0.891  
0.902  
0.894 

0.1921 
0.1997 
0.2010 
0.2010 

0.910  
0.915  
0.906  
0.905 

0.2959 
0.3002 
0.3077 
0.3077 

0.907  
0.912  
0.915  
0.908 

0.2168 
0.2223  
0.2240 
0.2240 

   0 

(80, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.889  
0.894  
0.898  
0.891 

0.1276  
0.1302 
0.1304 
0.1304 

0.889  
0.889  
0.887  
0.885 

0.1987 
0.1998  
0.2006 
0.2006 

0.900  
0.903  
0.908  
0.902 

0.1445 
0.1463 
0.1468 
0.1468 
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Table VI: Level of 90 per cent confidence interval for 
10 ppΔ . Bivariate normal distribution with 0=ρ . 

 
( 0p , 1p )=(0-0.4) ( 0p , 1p )=(0-0.7) ( 0p , 1p )=(0.05-0.5) True

10 ppΔ  
Sample   size 
      (m,n)           

Method 

Coverage 
probability 

Length Coverage 
probability 

Length Coverage 
probability 

Length 

(20, 20) 
 

HBEL 
EL 
BT 
BS 
 

0.965  
0.966  
0.969  
0.962 

0.1197 
0.1228 
0.2250 
0.2250 

0.953  
0.953  
0.946  
0.944 

0.1871 
0.1851 
0.3305 
0.3305 

0.953  
0.957  
0.960  
0.936 

0.1261 
0.1283 
0.2577 
0.2577 

(50, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.938  
0.939  
0.940  
0.938 

0.0638  
0.0645 
0.1201 
0.1201 

0.927  
0.926  
0.920 
0.920 

0.0985 
0.0986 
0.1892 
0.1892 

0.942  
0.943  
0.944  
0.932 

0.0744 
0.0750 
0.1408 
0.1408 

(80, 80) 
 

HBEL 
EL 
BT 
BS  
 

0.923  
0.924  
0.924  
0.923 

0.0446 
0.0449  
0.0893 
0.0893 

0.915  
0.915  
0.911  
0.909 

0.0715 
0.0715 
0.1463 
0.1463 

0.927  
0.928  
0.928  
0.915 

0.0521 
0.0523 
0.1079 
0.1079 

(50, 20) HBEL 
EL 
BT 
BS  
 

0.912  
0.916  
0.919  
0.913 

0.0869 
0.0882 
0.1630 
0.1630 

0.911  
0.912  
0.907  
0.909 

0.1363 
0.1370 
0.2700 
0.2700 

0.893  
0.896  
0.901  
0.879 

0.1045 
0.1061 
0.1963 
0.1963 

   0.2 

(80, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.921  
0.922  
0.929  
0.919 

0.0539 
0.0544 
0.1054 
0.1054 

0.892  
0.892  
0.891  
0.887 

0.0879 
0.0880 
0.1749 
0.1749 

0.915  
0.916  
0.916  
0.900 

0.0665 
0.0670 
0.1276 
0.1276 
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Table VII: Level of 90 per cent confidence interval for 
10 ppΔ . Bivariate normal distribution with 3.0=ρ . 

 
( 0p , 1p )=(0-0.4) ( 0p , 1p )=(0-0.7) ( 0p , 1p )=(0.05-0.5) True

10 ppΔ  
Sample   size 
      (m,n)           

Method 

Coverage 
probability 

Length  Coverage 
probability 

Length Coverage 
probability 

Length 

(50, 50) 
 

HBEL 
EL 
BT 
BS 
 

0.954  
0.961  
0.965  
0.959 

0.1387 
0.1422 
0.1426 
0.1426 

0.966  
0.966  
0.964  
0.962 

0.2138  
0.2146 
0.2154 
0.2154 

0.954  
0.956  
0.957  
0.953 

0.1550 
0.1572 
0.1578 
0.1578 

(80, 80) 
 

HBEL 
EL 
BT 
BS  
 

0.935  
0.939  
0.939  
0.936 

0.1072 
0.1090 
0.1091 
0.1091 

0.950  
0.950  
0.948  
0.945 

0.1654 
0.1659 
0.1662 
0.1662 

0.949  
0.951  
0.952  
0.949 

0.1219 
0.1230 
0.1233 
0.1233 

(150,150) 
 

HBEL 
EL 
BT 
BS  
 

0.952  
0.953  
0.955  
0.950 

0.0772  
0.0779 
0.0780 
0.0780 

0.953  
0.954  
0.951  
0.947 

0.1193 
0.1195 
0.1197 
0.1197 

0.944  
0.945  
0.947  
0.946 

0.0861 
0.0866 
0.0867 
0.0867 

(80, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.935  
0.939  
0.941  
0.934 

0.1279 
0.1305  
0.1308 
0.1308 

0.941  
0.941  
0.941  
0.936 

0.1994 
0.2004 
0.2007 
0.2007 

0.946  
0.949  
0.951  
0.945 

0.1450 
0.1467 
0.1472 
0.1472 

    0 

(150, 80) HBEL 
EL 
BT 
BS 
 

0.940  
0.942  
0.947  
0.938 

0.0984 
0.0995 
0.0997 
0.0997 

0.940  
0.941  
0.939  
0.938 

0.1541 
0.1547 
0.1549 
0.1549 

0.935  
0.936  
0.938  
0.934 

0.1109 
0.1117 
0.1119 
0.1119 



                                                                                                                                                             

 30

 

Table VIII: Level of 90 per cent  confidence interval for 
10 ppΔ . Bivariate normal distribution with 3.0=ρ . 

 
 

( 0p , 1p )=(0-0.4) ( 0p , 1p )=(0-0.7) ( 0p , 1p )=(0.05-0.5) True

10 ppΔ  
Sample   size 
      (m,n)           

Method 

Coverage 
probability 

Length Coverage 
probability 

Length Coverage 
probability 

Length 

(50, 50) 
 

HBEL 
EL 
BT 
BS 
 

0.956  
0.958  
0.958  
0.954 

0.0602 
0.0608 
0.1197 
0.1197 

0.946  
0.946  
0.948  
0.946 

0.0914 
0.0912 
0.1902 
0.1902 

0.965  
0.965  
0.965  
0.963 

0.0775 
0.0781 
0.1411 
0.1411 

(80, 80) 
 

HBEL 
EL 
BT 
BS 
  

0.940 
0.941  
0.942  
0.938 

0.0438  
0.0441 
0.0889 
0.0889 

0.935  
0.935  
0.935  
0.934 

0.0766 
0.0765 
0.1457 
0.1457 

0.948  
0.948  
0.949  
0.935 

0.0531 
0.0534 
0.1075 
0.1075 

(150, 150) 
 

HBEL 
EL 
BT 
BS  
 

0.925  
0.925  
0.925  
0.925 

0.0310 
0.0312  
0.0622 
0.0622 

0.944  
0.945  
0.941  
0.938 

0.0510 
0.0510 
0.1040 
0.1040 

0.954  
0.955  
0.954  
0.944 

0.0380 
0.0381 
0.0748 
0.0748 

(80, 50) 
 

HBEL 
EL 
BT 
BS  
 

0.931  
0.934  
0.933  
0.929 

0.0542 
0.0546 
0.1053 
0.1053 

0.946  
0.947  
0.942  
0.940 

0.0868 
0.0871 
0.1752 
0.1752 

0.931  
0.936  
0.936  
0.930 

0.0648 
0.0653 
0.1279 
0.1279 

0.2 

(150, 80) 
 

HBEL 
EL 
BT 
BS 
 

0.909  
0.913  
0.912  
0.909 

0.0413  
0.0415 
0.0792 
0.0792 

0.936  
0.936  
0.935  
0.932 

0.0651 
0.0652 
0.1350 
0.1350 

0.931  
0.933  
0.933  
0.925 

0.0492 
0.0494 
0.0957 
0.0957 
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APPENDIX B: Real Data Analysis Tables 
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Table IX: Dermatoscope Example 
Level of 95 per cent confidence interval for 

10 ppΔ  
 

Method CI & Length 
( 0p , 1p )= 

(0-0.4) 
( 0p , 1p )= 

(0-0.7) 
( 0p , 1p )= 
(0.05-0.5) 

HBEL 
Lower-Limit -0.10722 -0.11170 -0.09468 

 
Upper-Limit 0.10722 0.11170 0.09468 

 
CI_Length 0.21444 0.22340 0.18936 

EL 
Lower-Limit -0.10913 -0.11129 -0.09512 

 
Upper-Limit 0.10913 0.11129 0.09512 

 
CI_Length 0.21826 0.22258 0.19024 

BT 
Lower-Limit -0.10931 -0.11155 -0.09533 

 
Upper-Limit 0.10931 0.11155 0.09533 

 
CI_Length 0.21862 0.22310 0.19066 

BS 
Lower-Limit -0.10945 -0.11714 -0.10025 

 
Upper-Limit 0.10917 0.10596 0.09041 

 
CI_Length 0.21862 0.22310 0.19066 

Estimate of  
10 ppΔ  -0.00014 -0.00559 -0.00492 
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Table X: Dermatoscope Example 

Level of 90 per cent confidence interval for 
10 ppΔ  

 

Method CI &  Length 
( 0p , 1p )= 

(0-0.4) 
( 0p , 1p )= 

(0-0.7) 
( 0p , 1p )= 
(0.05-0.5) 

HBEL Lower-Limit -0.08697 -0.08704 -0.08132 

 Upper-Limit 0.08697 0.08704 0.08132 

 CI_Length 0.17394 0.17408 0.16263 

EL Lower-Limit -0.08837 -0.08674 -0.08163 

 Upper-Limit 0.08837 0.08674 0.08163 

 CI_Length 0.17674 0.17349 0.16326 

BT Lower-Limit -0.08846 -0.08687 -0.08176 

 Upper-Limit 0.08846 0.08687 0.08176 

 CI_Length 0.17693 0.17374 0.16353 

BS Lower-Limit -0.08675 -0.08216 -0.08214 

 Upper-Limit 0.09018 0.09158 0.08139 

 CI_Length 0.17693 0.17374 0.16353 

Estimate of  
10 ppΔ  0.00171 0.00471 -0.00037 
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APPENDIX C:  The Splus code for simulation studies  

#######################part 1: Functions##################### 
 
## Function R(p)## 
  Rp<-function(p, muy, stdd) 1-pnorm(qnorm(1-p),muy, stdd) 
   
 
## solveNonlinear## 
##nlmin can be used to solve a system of nonlinear equations: 
  solveNonlinear <- function(f, y0, x, ...){ 
  # solve f(x) = y0 
  # x is vector of initial guesses, same length as y0 
  # ... are additional arguments to nlmin (not to f) 
  g <- function(x, y0, f) sum((f(x) - y0)^2) 
  g$y0 <- y0   # set g's default value for y0 
  g$f <- f     # set g's default value for f 
  nlmin(g, x, max.fcal = 10000, max.iter = 10000, ...) 
  } 
 
##calculate x[1]=y1.mean x[2]=y2.mean## 
mu <- function(x){  
c( integrate(Rp, muy=x[1], stdd=y1.sd, lower=p0, upper = p1)$integral,  
  integrate(Rp, muy=x[2], stdd=y2.sd, lower=p0, upper = p1)$integral ) 
} 
 
##function for sigma## 
my.mean <- function(vv) mean((vv-mean(vv))^2) ; 
 
 
##solve  x[1]: p0p1.1  x[2]: p0p1.2  x[3]: lamda 
f <- function(x) c( mean((V.hat[,1]-x[1])/(1-2*x[3]*(V.hat[,1]-x[1]))), 
                     mean((V.hat[,2]-x[2])/(1+2*x[3]*(V.hat[,2]-x[2]))), 
  mean(V.hat[,2]/(1+2*x[3]*(V.hat[,2]-x[2])))-mean(V.hat[,1]/(1-

2*x[3]*(V.hat[,1]-x[1])))) 
 
 
 
##x[1]: p0p1.1  x[2]: p0p1.2  x[3]: lamda x[4]: delta using C.deltap0p1.hat 
g2 <- function(x) c( mean((V.hat[,1]-x[1])/(1-2*x[3]*(V.hat[,1]-x[1]))), 
                     mean((V.hat[,2]-x[2])/(1+2*x[3]*(V.hat[,2]-x[2]))), 
      mean(V.hat[,2]/(1+2*x[3]*(V.hat[,2]-x[2])))-mean(V.hat[,1]/(1-

2*x[3]*(V.hat[,1]-x[1])))-x[4], 
     C.deltap0p1.hat*(2*(sum( log(abs(1-2*x[3]*(V.hat[,1]-x[1]))))+sum( 

log(abs(1+2*x[3]*(V.hat[,2]-x[2]))))))-CritVal) 
 
 
##x[1]: p0p1.1  x[2]: p0p1.2  x[3]: lamda x[4]: delta using C.deltap0p1 
g1 <- function(x) c( mean((V.hat[,1]-x[1])/(1-2*x[3]*(V.hat[,1]-x[1]))), 
                     mean((V.hat[,2]-x[2])/(1+2*x[3]*(V.hat[,2]-x[2]))), 
      mean(V.hat[,2]/(1+2*x[3]*(V.hat[,2]-x[2])))-mean(V.hat[,1]/(1-

2*x[3]*(V.hat[,1]-x[1])))-x[4], 
      C.deltap0p1*(2*(sum( log(abs(1-2*x[3]*(V.hat[,1]-x[1]))))+sum( 

log(abs(1+2*x[3]*(V.hat[,2]-x[2]))))))-CritVal) 
 
 
##function for deltapAUC.hat## 
deltapAUC <- function(X1X2, Y1Y2, p0, p1, m){ 
 
  # Caculate X Quantile of 1-pi (i=0,1) for q.hat 
  q0.1.hat<-quantile(X1X2[,1],1-p0);  
  q0.2.hat<-quantile(X1X2[,2],1-p0);  
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  q1.1.hat<-quantile(X1X2[,1],1-p1);  
  q1.2.hat<-quantile(X1X2[,2],1-p1);  
 
   # Caculate V(ki).hat & C(deltap0p1).hat 
   V.hat<-matrix(, m, 2) 
 
  for (i in 1 : m){ 
     V.hat[i,1]<-(1-mean(Y1Y2[,1]<= X1X2[i,1]))*(q1.1.hat <= 

X1X2[i,1])*(X1X2[i,1]<=q0.1.hat) 
     V.hat[i,2]<-(1-mean(Y1Y2[,2]<= X1X2[i,2]))*(q1.2.hat <= 

X1X2[i,2])*(X1X2[i,2]<=q0.2.hat) 
     } 
  delta.pAUC.hat<-mean(V.hat[,2])-mean(V.hat[,1]) 
  C.deltap0p1.hat<-(my.mean(V.hat[,1])+my.mean(V.hat[,2]))/(m*Vstar) 
 
  list(delta.pAUC.hat, C.deltap0p1.hat, V.hat) 
 } 
 
 
##bootstrap function## 
booth.trap <- function(B, X1X2, Y1Y2, m, n, p0, p1){ 
   delta.pAUC<-0; 
  sigma <- matrix(,B, 2) 
  for (b in 1:B) { 
        X1B <- sample(X1X2[,1], m, replace = T) 
        X2B <- sample(X1X2[,2], m, replace = T) 
        Y1B <- sample(Y1Y2[,1], n, replace = T) 
        Y2B <- sample(Y1Y2[,2], n, replace = T) 
 
        q0B.1.hat<-quantile(X1B, c(1-p0)) # hatq0, hatq1: sample quantiles of F 
        q0B.2.hat<-quantile(X2B, c(1-p0)) # hatq0, hatq1: sample quantiles of F 
        q1B.1.hat<-quantile(X1B, c(1-p1)) 
        q1B.2.hat<-quantile(X2B, c(1-p1)) 
 
        VB    <- matrix(,m, 2) 
          
for (i in 1:m)    
    { 
VB[i,1]<- (1-mean(Y1B <= X1B[i])) *(q1B.1.hat <= X1B[i])*(X1B[i] <= q0B.1.hat) 
VB[i,2]<- (1-mean(Y2B <= X2B[i])) *(q1B.2.hat <= X2B[i])*(X2B[i] <= q0B.2.hat) 
    } 
 
       sigma[b,1]<-my.mean(VB[,1])   
       sigma[b,2]<-my.mean(VB[,2]) 
 
       delta.pAUC[b]<-mean(VB[,2])-mean(VB[,1]) 
       } 
  list(delta.pAUC, sigma) 
  } 
 
########################### End function part #################### 
 
########################### Part2: initial value##################  
iter<-1000 
B=150 
rho=0 
#rho=0.3 
m<-50; n<-20;  
y1.sd<-2; y2.sd<-2;  
 
levelc<-0.95 
#levelc<-0.90 
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CritVal<-qchisq(levelc,1) 
Z<-qnorm(1-(1-levelc)/2) 
  
y1.mean<-y2.mean<-0 
p0<-0 ; p1<-0.4  
 
 pAUC1 <- 0.2 
 pAUC2 <- 0.2 
 deltapAUC.true<- pAUC2-pAUC1 
 
 S<-solveNonlinear(mu, c(  pAUC1, pAUC2), c(0.1, 0.1))  
  y1.mean<-S$x[1] 
  y2.mean<-S$x[2] 
 
####################  End part2  ####################### 
 
 
 
#################### Part3:  Loop    ################### 
CovCount<-c(0,0,0,0) 
CIL<-c(0,0,0) 
#LP<-c(0,0,0,0) 
#UP<-c(0,0,0,0) 
 
 
for ( i12 in c(1:iter)){  
   
# generate non-diseased population F(X1, X2) 
# the sample from 2-dimensinal multinormal distribution with mean 0 and std=1 
   X1X2<-rmvnorm(m, mean=c(0,0), cov=matrix(c(1,rho,rho,1),2)) 
        
# generate  diseased population G(Y1,Y2) 
# the sample from 2-dimensinal multinormal distribution with mean 
#(y1.mean,y2.mean) and std=(y1.sd,y2.sd)  
  Y1Y2<-rmvnorm(n, mean=c(y1.mean,y2.mean), 

cov=matrix(c(y1.sd^2,rho*y1.sd*y2.sd, rho*y1.sd*y2.sd, y2.sd^2),2)) 
 
  ##### 1. bootstrap ###### 
  boot.list<- booth.trap(B, X1X2, Y1Y2, m, n, p0, p1) 
  
  delta.pAUC <- boot.list[[1]] 
  sigma <- boot.list[[2]] 
 
  delta.pAUCbar.B<-mean(delta.pAUC); delta.pAUCbar.B  # Estimate mean 

difference of two pAUCs by bootstrap 
 
  Vstar<-var(delta.pAUC);        #Variance of delta.pAUC by bootstrap 
 
  C.deltap0p1<-(mean(sigma[,1])+mean(sigma[,2]))/(m*Vstar);  
 
  #####END OF BOOTSTRAP####### 
 
 
  ###### 2. Caculate delta.pAUC.hat###### 
 
  delta.pAUC.hat.list <- deltapAUC(X1X2, Y1Y2, p0, p1, m) 
 
  delta.pAUC.hat <- delta.pAUC.hat.list[[1]] 
  C.deltap0p1.hat <- delta.pAUC.hat.list[[2]] 
  V.hat <- delta.pAUC.hat.list[[3]] 
 
  ########END OF 2.  ######### 
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  ###### 3. caculate L.deltap0p1###### 
  # EL Method # 
 
  #x[1]: p0p1.1  x[2]: p0p1.2  x[3]: lamda 
 
  x<-solveNonlinear(f, c( 0,0, deltapAUC.true), c(0.1, 0.2, 0))   
 
  p0p1.1<-x$x[1]; 
  p0p1.2<-x$x[2]; 
  lamda<-x$x[3];  
 
  l.delta.p0p1<-2*(sum( log(1-2*lamda*(V.hat[,1]-p0p1.1)))+sum( 

log(1+2*lamda*(V.hat[,2]-p0p1.2)))) 
 
 
  Vel<-C.deltap0p1*l.delta.p0p1;  
  Vel.hat<-C.deltap0p1.hat*l.delta.p0p1;  
####END OF 3. ###### 
 
###### 4. Caculate C.I and coverage###### 
 
## compute the HBEL interval(Vel from bootstrap)## 
      if (Vel <= CritVal) 
      CovCount[1]<-CovCount[1]+1 
 
     #x[1]: p0p1.1  x[2]: p0p1.2  x[3]: lamda x[4]: delta 
 
       bd<-solveNonlinear(g1, c( 0,0,0,0), c(0.3, 0.1, 0.001, -0.9))   
      #low.HBEL<-bd$x[4]  # lower limit of the CI 
 
      b<-solveNonlinear(g1, c( 0,0,0,0), c(0.1, 0.3, 0.001, 0.999))   
      #up.HBEL<-b$x[4]    # upper limit of the CI 
 
     #low and up band HBEL      
     #LP[1]<- LP[1]+bd$x[4] 
      #UP[1]<- UP[1]+ b$x[4] 
  
      # The length of HBEL CI 
      CIL[1]<- CIL[1]+(b$x[4]- bd$x[4])   
 
 
## compute the EL interval(Vel.hat)## 
      if (Vel.hat <= CritVal) 
      CovCount[2]<-CovCount[2]+1 
 
      #x[1]: p0p1.1  x[2]: p0p1.2  x[3]: lamda x[4]: delta 
       
     lw<-solveNonlinear(g2, c( 0,0,0,0), c(0.3, 0.1, 0.001, -0.999))   
     #low.EL<-lw$x[4]      # lower limit of the CI 
 
     upb<-solveNonlinear(g2, c( 0,0,0,0), c(0.1, 0.3, 0.001, 0.999))   
     #up.EL<-upb$x[4]        # upper limit of the CI 
 
     #low and up band of El    
      #LP[2]<- LP[2]+lw$x[4] 
      #UP[2]<- UP[2]+ upb$x[4] 
 
     # The length of EL CI 
      CIL[2]<- CIL[2]+(upb$x[4]- lw$x[4]) 
 
 
## compute the BTI interval. 
   hwidth<-Z*sqrt(Vstar) 
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     # tlow<- delta.pAUC.hat-hwidth    # lower limit of the CI 
      #tup<- delta.pAUC.hat+hwidth    # upper limit of the CI 
   
      if (((delta.pAUC.hat-hwidth)<= deltapAUC.true) & ((delta.pAUC.hat+hwidth) 

>= deltapAUC.true)) CovCount[3]<-CovCount[3]+1 
 
      #low and up band 
       #LP[3]<-LP[3]+(delta.pAUC.hat-hwidth)  
      #UP[3]<-UP[3]+(delta.pAUC.hat+hwidth) 
       CIL[3]<- CIL[3]+2*hwidth     # The length of BT and BS CI 
 
 
      
 
## compute the bootstrap(BS) interval 
      #bslow<- delta.pAUCbar.B-hwidth   # lower limit of the CI 
      #bsup<- delta.pAUCbar.B+hwidth       # upper limit of the CI 
   
       if (((delta.pAUCbar.B-hwidth) <= deltapAUC.true) & 

((delta.pAUCbar.B+hwidth)>= deltapAUC.true)) CovCount[4]<-CovCount[4]+1 
      #low and up band 
      #LP[4]<-LP[4]+(delta.pAUCbar.B-hwidth) 
      #UP[4]<-UP[4]+(delta.pAUCbar.B+hwidth) 
 
       
} 
 
 cov<-CovCount/iter; cov 
  #bound.L<-LP/iter 
  #bound.U<-UP/iter 
  wid<-CIL/iter;wid 
 
#Result Output 
sink("C:\\Temp\\new5020.txt",append = T) 
 
cat("iter=", iter,"At level=", levelc, "m=", m, "n=", 

n,"rho=",rho,"Delta=",deltapAUC.true, "p0=", p0, "p1=", p1, "\n") 
cat("mean1=",y1.mean,"mean2=", y2.mean,"y1std=", y1.sd, "y2std=", y2.sd, "B=", 

B, "\n") 
 
cat("Coverage of the (HBEL, EL, BT, BS) CI's for delta :", cov, "\n") 
cat("Average length of (HBEL,EL,BTI&BS):", wid, "\n") 
 
cat("--------------------------------------------------------------------------

------------------------------","\n") 
 
 
sink(); 
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APPENDIX D:  The Splus code for real data analysis  

coln<-c("ID", "MTH1", "MTH2","GP") 
realdata<-read.table("C:\\TEMP\\Thesis\\exam3.dat",col.names=coln, header=F) 
realdata 
X1<-realdata$MTH1[realdata$GP==0]; X1 
X2<-realdata$MTH2[realdata$GP==0]; X2 
Y1<-realdata$MTH1[realdata$GP==1]; Y1 
Y2<-realdata$MTH2[realdata$GP==1]; Y2 
m=length(X1) 
n=length(Y1) 
 
levelc<-0.90; 
CritVal<-qchisq(levelc,1) 
#Z<-qnorm(levelc);  
Z<-qnorm(1-(1-levelc)/2) 
p0<-0.05;  p1<-0.5; 
 
 
###### part 1: Bootstrap  ###### 
  #### Bootstrap start #### 
   B=500; 
   sigma=pAUC=matrix(,B, 2) 
   
 
   for (b in 1:B)  
    { 
    X1B <- sample(X1, m, replace = T) 
    X2B <- sample(X2, m, replace = T) 
    Y1B <- sample(Y1, n, replace = T) 
    Y2B <- sample(Y2, n, replace = T) 
 
    q0B.1.hat<-quantile(X1B, c(1-p0)) # hatq0, hatq1: sample quantiles of F 
    q0B.2.hat<-quantile(X2B, c(1-p0)) # hatq0, hatq1: sample quantiles of F 
    q1B.1.hat<-quantile(X1B, c(1-p1)) 
    q1B.2.hat<-quantile(X2B, c(1-p1)) 
 
     
    VB <- matrix(,m,2) 
    for (i in 1:m)  
       { 
        VB[i,1]<- (1-mean(Y1B <= X1B[i])) *(q1B.1.hat <= X1B[i])*(X1B[i] <= 

q0B.1.hat) 
        VB[i,2]<- (1-mean(Y2B <= X2B[i]))*(q1B.2.hat <= X2B[i])*(X2B[i] <= 

q0B.2.hat) 
       } 
 
       sigma[b,1]<-mean((VB[,1]-mean(VB[,1]))^2)    ##my.mean(VB[,1]) if using 

function  
       sigma[b,2]<-mean((VB[,2]-mean(VB[,2]))^2) 
 
        
       pAUC[b,1]<-mean(VB[,1])   
       pAUC[b,2]<-mean(VB[,2]) 
     
   } 
 
  delta.pAUCbar.B<-mean(pAUC[,2]-pAUC[,1])     # Estimate mean difference of 

two pAUCs by bootstrap 
 
   ##Variance of delta.pAUC by bootstrap 
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  #Vstar1<-var(pAUC[,1])+var(pAUC[,2]); #Vstar1        
 
#  V12<- sum((pAUC[,1]-mean(pAUC[,1]))*(pAUC[,2]-mean(pAUC[,2])))/(B-1) 
 # Vstar2<-var(pAUC[,1])+var(pAUC[,2])-2*V12;   #Vstar2 
 
   Vstar <- var(pAUC[,2]-pAUC[,1]);  Vstar   
 
   C.deltap0p1<-(mean(sigma[,1])+mean(sigma[,2]))/(m*Vstar); C.deltap0p1;  

#bootstrap C.deltap0p1 to caculate HBEL 
 
   
 
  #######################Bootstrap end ################## 
 
 
  ######Part 2:  Caculate delta.pAUC.hat###### 
 
 ## Caculate X Quantile of 1-pi (i=0,1) for q.hat 
  q0.1.hat<-quantile(X1,1-p0);q0.1.hat 
  q0.2.hat<-quantile(X2,1-p0);q0.2.hat 
  q1.1.hat<-quantile(X1,1-p1); q1.1.hat 
  q1.2.hat<-quantile(X2,1-p1); q1.2.hat 
 
  ## Caculate V(ki).hat & C(deltap0p1).hat 
  V1.hat<-V2.hat<-0 
  for (i in 1 : m){ 
     V1.hat[i]<-(1-mean(Y1<= X1[i]))*(q1.1.hat <= X1[i])*(X1[i]<=q0.1.hat) 
     V2.hat[i]<-(1-mean(Y2<= X2[i]))*(q1.2.hat <= X2[i])*(X2[i]<=q0.2.hat) 
     } 
 
  V1.hat 
  V2.hat 
  delta.pAUC.hat<-mean(V2.hat)-mean(V1.hat); delta.pAUC.hat 
 
  #V1.hat; #V2.hat 
  sigmap0p1.1.hat<-mean((V1.hat-mean(V1.hat))^2) 
  sigmap0p1.2.hat<-mean((V2.hat-mean(V2.hat))^2) 
  C.deltap0p1.hat<-(sigmap0p1.1.hat+sigmap0p1.2.hat)/(m*Vstar);  

C.deltap0p1.hat 
 
    
   
 
  ######Part 3: Caculate C.I and coverage###### 
 
   ## compute the HBEL1 interval(Vel from bootstrap)## 
       
     #x[1]: p0p1.1  x[2]: p0p1.2  x[3]: lamda x[4]: delta 
 
      g1 <- function(x) c( mean((V1.hat-x[1])/(1-2*x[3]*(V1.hat-x[1]))), 
                     mean((V2.hat-x[2])/(1+2*x[3]*(V2.hat-x[2]))), 
      mean(V2.hat/(1+2*x[3]*(V2.hat-x[2])))-mean(V1.hat/(1-2*x[3]*(V1.hat-

x[1])))-x[4], 
      C.deltap0p1*(2*(sum( log(abs(1-2*x[3]*(V1.hat-x[1]))))+sum( 

log(abs(1+2*x[3]*(V2.hat-x[2]))))))-CritVal) 
 
      bd<-solveNonlinear(g1, c( 0,0,0,0), c(0.3, 0.1, 0.001, -0.9))   
      low.HBEL<-bd$x[4]  # lower limit of the CI 
 
      b<-solveNonlinear(g1, c( 0,0,0,0), c(0.1, 0.3, 0.001, 0.999))   
      up.HBEL<-b$x[4]    # upper limit of the CI 
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      # The length of HBEL CI 
      CIL.HBEL=up.HBEL- low.HBEL   
 
 
    ## compute the EL interval(Vel.hat)## 
       
      #x[1]: p0p1.1  x[2]: p0p1.2  x[3]: lamda x[4]: delta 
      g2 <- function(x) c( mean((V1.hat-x[1])/(1-2*x[3]*(V1.hat-x[1]))), 
                     mean((V2.hat-x[2])/(1+2*x[3]*(V2.hat-x[2]))), 
       mean(V2.hat/(1+2*x[3]*(V2.hat-x[2])))-mean(V1.hat/(1-2*x[3]*(V1.hat-

x[1])))-x[4], 
      C.deltap0p1.hat*(2*(sum( log(abs(1-2*x[3]*(V1.hat-x[1]))))+sum( 

log(abs(1+2*x[3]*(V2.hat-x[2]))))))-CritVal) 
 
     lw<-solveNonlinear(g2, c( 0,0,0,0), c(0.3, 0.1, 0.001, -0.999))   
     low.EL<-lw$x[4];      # lower limit of the CI 
 
     up<-solveNonlinear(g2, c( 0,0,0,0), c(0.1, 0.3, 0.001, 0.999))   
     up.EL<-up$x[4];        # upper limit of the CI 
      
     # The length of EL CI 
      CIL.EL=up.EL- low.EL 
 
 
 
    ## compute the BT interval. 
    
      hwidth<-Z*sqrt(Vstar); hwidth 
      tlow<- delta.pAUC.hat-hwidth    # lower limit of the CI 
      tup<- delta.pAUC.hat+hwidth    # upper limit of the CI 
             
       CIL.BT<-2*hwidth     # The length of BT and BS CI 
 
 
    ## compute the bootstrap(BS) interval. 
      bslow<- delta.pAUCbar.B-hwidth   # lower limit of the CI 
      bsup<- delta.pAUCbar.B+hwidth       # upper limit of the CI 
   
       
 up=c(up.HBEL, up.EL, tup, bsup);up 
 low=c(low.HBEL, low.EL, tlow, bslow);low 
 wid=c(CIL.HBEL, CIL.EL, CIL.BT, CIL.BT);wid 
 
 
#Result Output; 
 
sink("C:\\temp\\real.txt", append = T) 
 
cat("Real data At level=", levelc, "p0=", p0, "P1=", p1, 
 "m=", m, "n=", n, "B=",  B, "\n") 
cat("delta.pAUCbar.B=", delta.pAUCbar.B, "delta.pAUC.hat=", delta.pAUC.hat, 

"\n" ) 
cat("upbound of the (HBEL, EL, BT, BS) CI's for real data are:", 
 up , "\n") 
cat("lowbound of the (HBEL, EL, BT, BS) CI's for real data are:", 
low , "\n") 
cat("length of (HBEL,EL,BTI&BS):",  
wid, "\n") 
 
cat("-----------------------------------------------------------------","\n") 
 
 
sink(); 
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