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ABSTRACT 
 

Neurons in the Locus coeruleus (LC) play an important role in the central CO2 

chemosensitivity. However, the molecular mechanisms for neuronal CO2 chemosensitivity 

remain unclear. To demonstrate the expression of pH/CO2 sensitive ion channels, we 

screened the inward rectifier K+ channels (Kir) and transient receptor protein (TRP) 

channels, as parallel studies in this lab suggested that certain Kir and TRP channels are 

involved in neuronal responses to high levels of CO2. Our results showed that several 

members of the Kir and TRP channel families were robustly expressed in the LC neurons 

at the mRNA level. Of particular interest are TRPC5, Kir4.1 and Kir5.1 channels that are 

all pH-sensitive. The rich expression of various pH-sensitive Kir and TRP channels 

suggests that these ion channels are likely to play a role in the chemosensitivity of LC 

neurons. 

 
 
 
INDEX WORDS: Norepinephrine, Dopamine β-hydroxylase, Brainstem, Locus 
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1. INTRODUCTION 

Breathing is a vital function controlled autonomically and voluntarily by several 

brain areas. Central breathing activity is a continuous process starting from the stage of 

utero. The control and regulation of breathing relies on the neural networks especially 

those in the brainstem. The connections in the neural networks are changed according 

to the age and maturity. Such a complex behavior is responsible for the maintenance of 

stable levels of CO2, O2 and pH as well as the regulation of speech, singing, body 

postures, etc. 

There are three critical aspects of breathing, i.e., rhythmicity, plasticity and 

chemosensitivity. Rhythmicity is the regular pattern of breathing. Plasticity is the 

adaptive behavior of breathing according to the changes in the environment like altitude, 

pregnancy and disease. Chemosensitivity is the regulation of the breathing in the neural 

networks according to the changes in the levels of CO2, O2 and pH (Feldman et al., 

2003). 

 

1.1. Rhythmicity 

The breathing rhythm generation relies on neural networks and the pacemaker 

properties of individual neurons. The brain stem neurons are crucial for the rhythm 

generation. The neural kernel for the rhythmicity is located in the rostral ventrolateral 

medulla in an area called preBotzinger complex (PBC)(Smith et al., 1991). The 

lesioning of the PBC region in vitro resulted in abolishing the rhythmicity. The disruption 

of the local synaptic transmission of PBC also disrupts the activity of rhythm generation 

(Bongianni et al., 2002; Fung et al., 1994; Gray et al., 1999; Solomon et al., 1999). The 
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distinct patterns of discharge in the PBC neurons are important for the rhythm 

generation for breathing. The absence of clear making for the PBC hindered the clear 

understanding of its involvement in the rhythmicity. The expression of neurokinin 1 

receptor (NK1R) in the ventral respiratory column in the rodent proposed the 

identification of PBC neurons (Gray et al., 1999). These neurons in the region are 

further divided depending upon preproenkephalin (PPE) expression. The neurons with 

PPE are bulbospinal cells which are larger than the neurons without PPE which are 

propriobulbar and more rostral (Guyenet et al., 2002). The bulbospinal neurons are not 

involved in the rhythm generation, indicating that the PBC region contains mostly 

propriobulbar neurons with neurokinin 1 receptors (Makeham et al., 2001). The 

pacemaker neurons in the PBC region do not affect the normal rhythm generation (Del 

Negro et al., 2002). The overlapping of different patterns of neural networks in the PBC 

region is responsible for different patterns of respiration like eupnea, sighing, gasping, 

etc. (Lieske et al., 2000; Ramirez et al., 2002). These different respiratory patterns are 

produced because of articulation of synaptic and intrinsic properties in PBC region 

(Rekling et al., 2000). 

 

1.2. Plasticity 

Plasticity is the property involved during the conditions like changes in the levels 

of O2, hypoxia, hypercapnia, conditioning, neural injury (Cheng et al., 2002; Gozal and 

Gozal, 2001; Mitchell and Johnson, 2003; Powell et al., 1998). The changes in the 

environmental conditions, aging, and disease are the conditions where the 
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neuroplasticity plays an important role. Neuroplasticity requires the activation of different 

receptor complexes like serotonin, dopamine and norepinephrine (Baker et al., 2001; 

Huey et al., 2000a; Huey et al., 2000b; Kinkead et al., 2001; Mitchell et al., 2001). 

Serotonin is involved in neuroplasticity in different conditions like hypercapnic exercise, 

intermittent hypoxia, chemoafferent denervation (Forster, 2003; Forster et al., 2000; 

Golder et al., 2001; Ling et al., 2001; Mitchell and Johnson, 2003; Prabhakar, 2001). 

Serotonin receptor complex is involved in long term facilitation (LFT) of respiration 

(Bach and Mitchell, 1996). This involvement depends upon different conditions like age, 

previous experience and gender. The prior experience shows the property of 

metaplasticity in breathing (Kinkead et al., 1998). The response of LFT also depends 

upon the arterial CO2 levels (Janssen and Fregosi, 2000). 

 

1.3. Chemosensitivity 

The chemosensitivity of breathing is regulated by chemoreceptors which sense 

the changes in O2, CO2, and pH (Ballantyne and Scheid, 2001). The O2 

chemosensitivity is regulated in carotid bodies that are located at the fork of the carotid 

arteries. Although the CO2/pH chemoreceptors are found in the carotid bodies, most 

are located in the brain stem known as central chemoreceptors. The central 

chemoreceptors are extremely sensitive to the minor changes in the levels of CO2/pH. 

The changes are indicated by the changes in the acid-base levels in the blood and the 

brain (Nattie and Li, 2008). There are various locations in the brain which regulate the 

chemoreception. Some of sites include fastigial nucleus (FN), locus coeruleus (LC), 

Nucleus of solitary tract (NTS), rostral ventral respiratory group (rVRG), nucleus 
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ambiguus (NA), lateral reticular nucleus (LRN), and retrotrapezoid nucleus (RTN). 

The changes in intracellular and extracellular pH are the key aspects of central 

chemoreception. Some motor neurons that are modulated by respiration are sensitive 

to the extracellular pH (Bayliss et al., 2001) whereas the neurons located in LC and 

medullary raphe nuclei are involved in sensing intracellular levels of pH (Filosa et al., 

2002; Wang et al., 2001b). Amino acids like histidine present in the proteins are 

involved in sensing the pH (Jiang et al., 2001). There are many locations that sense the 

levels of pH like low resistance gap junctions with TASK channels and inward rectifying 

K+ channels and pH sensitive ion transporter proteins (Bayliss et al., 2001; Dean et al., 

2001; Jiang et al., 2001; Solomon, 2003; Spengler et al., 2001). These various 

locations sense the changes in the pH simultaneously. The lower brain is the major 

location for the central chemoreception (Ballantyne and Scheid, 2001; Li et al., 1999; 

Nattie and Li, 2002; Solomon, 2003). The response of the neurons to the increased 

levels of CO2 indicates the role of chemosensitive neurons. The chemoreceptor sites 

work together to produce increased ventilation with the increase in the levels of CO2. 

The increase in the ventilation by 120% with the increase in the levels of CO2 at low 

intensity show that most of the chemoreceptor sites work simultaneously which 

produced overall high sensitivity to CO2 levels (Li and Nattie, 2002). Some of the 

neurons in the PBC site are also involved in chemoreception (Gray et al., 2001). The 

chemoreception is coupled to the breathing rhythmicity. The serotonergic and 

noradrenergic medullary neurons are involved in different functions like neuroplasticity 

and chemoreception. The serotonergic neurons play a role in the development of motor  

neurons involved in respiration and neuronal growth. 
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1.4. LC neurons as chemosensitive site in the brainstem 

The noradrenergic neurons present in the LC expressing c-fos, increases 

breathing by focal acidosis and the neurons are excited by CO2 (Haxhiu et al., 2001). 

The LC is the major source of noradrenergic neurons located in the dorsal pontine 

region of brain stem adjacent to the fourth ventricle. The LC neurons are involved in 

regulating the cardiovascular function during hypercapnic conditions which causes the 

increase in the arterial blood pressure. The noradrenergic neurons present in the LC 

form the highest group of neurons that are excited by high levels of CO2/pH. Among the 

80% of the noradrenergic neurons present in the LC region 64% of them responded to 

levels of CO2. This indicates the involvement of LC neurons in breathing. The change in 

the levels of intracellular pH increases the firing rate of the LC neurons. The change in 

the extracellular pH along with the intracellular pH modulates the firing activity in the LC 

neurons. There are many signals that cause the chemosensitivity of LC neurons along 

with the change in the pH. The chemosensitivity of LC neurons in turn affect multiple 

targets. This will cause the increase in the firing activity in the LC neurons. The 

norepinephrenergic neurons present in the LC region extend their projections to other 

parts of the brain like frontal cortex, cerebellum, hippocampus, spinal cord and 

brainstem (Berridge and Waterhouse, 2003; Dunn et al., 2004). The disruption of the 

intrinsic properties of the LC neurons during diseased conditions is caused due to 

changes in NE levels (Zhang et al., 2010). The firing activity of LC neurons during  

hypercapnic conditions is because of the presence of different ions channels and their 

responses. 
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1.5. Inhibition of Inward rectifier K+ channels  

The inhibition of K+ channels produce depolarization. There are various 

categories of K+ channel members that are present in the brain. The different 

categories of K+ channel members include calcium activated K+ channels, inwardly 

rectifying K+ channels (Walder et al.), voltage gated K+ channels and tandem pore 

domain K+ channels. A group of K+ channels that are mostly present in the neurons are 

the inwardly rectifying K+ channels (Walder et al.). The Kir channels preferably move K+ 

into the cell rather than out of the cell in the absence of extracellular Na+. The name 

inwardly rectification indicates that the channel passes positive charge more easily in 

the inward direction. These channels have a role in establishing the resting membrane 

potential of the cell. Kir channels exist as tetramers and align to form a pore region to 

allow the passage of ions. Each subunit of the tetramer consists of two transmembrane 

domains (TM1, TM2). The subunits can form either homodimers or heterodimers. The 

constitutively active K+ channels (Kir2.x), the G-protein coupled receptor Kir channels 

(Kir3.x), kir channels (Kir6.x) that are involved in cellular metabolism and sensitive to 

ATP and K+ transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). The members of each 

subfamily have identical amino acid sequence. Kir channels are commonly found to be 

present in the endothelial cells, neurons, cardiac myocytes and kidneys. Their roles 

vary according to the cell type in which they are present. Disruption of the channel 

function due to mutations or blockers can lead to severe pathologies. Kir5.1 is often co-

expressed with Kir4.1 as Kir4.1/Kir5.1 heterodimers. These heterodimers are present in 

the glomeruli and neocortex of the olfactory bulb. Because of the varied channel 
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properties, each member of the Kir channel has a different physiological role. There are 

different members of Kir channels that are expressed in the LC neurons. These Kir 

channels are expressed in different locations of brainstem including LC. 

The previous studies show the inhibition of Kir4.1/Kir5.1 at high levels of CO2. 

The Kir4.1 and Kir5.1 were microinjected into the Xenopus oocytes and were 

incubated for 2-3days for the channel expression. The different levels of CO2 show 

the inhibition of channel members at high levels of CO2 (figure 1) (Xu et al., 2000). 
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H. Xu, N. 728 Cui, Z. Yang, Z. Qu and C. Jiang; J. Physiol. 524.3 

 

Figure 1: The expression levels of Kir4.1 and Kir5.1 channel currents.  
The A and B show the inhibition of Kir 4.1 and Kir4.1-Kir5.1 channel currents at high 

levels of CO2 respectively. The C, D shows the % current inhibition to that of CO2 
concentration of Kir4.1 and Kir4.1-Kir5.1 respectively. 
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H. Xu, N. 728 Cui, Z. Yang, Z. Qu and C. Jiang; J. Physiol. 524.3 
 
 
 
Figure 2: The figure shows the inhibition of Kir4.1 and Kir4.1-Kir5.1 channel 
currents at low levels of pH. 
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The decrease in the intracellular pH produced by hypercapnic conditions 

cause the inhibition of various Kir channels like homomeric Kir 4.1 channels and 

heteromeric Kir4.1-Kir5.1 channels (figure 2) (Xu et al., 2000). 

 

1.6. Activation of Transient Receptor Potential channels (TRP) 

The activation of cationic channels also produces depolarization. One of the 

most interesting diversified superfamily of cationic channels are Transient Receptor 

Potential (TRP) channels. The TRP channels are divided into seven families depending 

upon the homology of their sequences (Clapham, 2003; Corey, 2003; Montell et al., 

2002) (Corey, 2003) (Clapham, 2003).The TRP super family is divided into two groups, 

group 1 and group 2 (Palmer et al., 2001) (Denis and Cyert, 2002). The group 1 of TRP 

superfamily consists of TRPA, TRPC, TRPM, TRPN, TRPV channels whereas the 

group 2 consists of TRPML and TRPP channels. The cation selective ion channels are 

formed by the homo or hetero-tetramer assembly of different channels. The selectivity 

and permeability of different cations by the ion channels depends on the assembly of 

the channels. The TRP channels are recognized to be important because of their role in 

responses to external stimuli like light, chemicals, temperature and sounds. These TRP 

channels are expressed in almost all multicellular organisms including yeast. The TRP 

like protein expressed in yeast vacuole is recognized as TRPY which is also called yvc1 

(Palmer et al., 2001). The families of TRP channels share some common features like 

the six putative transmembrane domains and a pore region in between fifth and sixth 

segments of transmembrane domain. The study of mutated Drosophila in which the 
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transient response to light was observed which led to the discovery of trp gene. The 

study of the trp gene in different multicellular organisms led to the formation of TRP 

superfamily. 

 

 

 

 

 

 

 

 

 

 

 

S.F. Pedersen et al. / Cell Calcium 38 (2005) 233–252 
 
Figure 3. The figure shows the phylogenetic tree of TRP superfamily.
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TRPA family has only one member -TRPA1. The locations of TRPA channel are 

hair cells (Corey et al., 2004), dorsal root ganglion and trigeminal ganglion. The TRPA1 

protein is characterized by the presence of 14 N-terminal ankyrin repeats because of 

which it is called ANKTM1 protein (Story et al., 2003). These proteins are mostly located 

in the stereocilia of hair cells and are found to be involved in mechanosensing. These 

channels are Ca2+ dependent and are voltage dependent to some extent. The TRPA1 

gene has some similarity with TRPM8 gene. The TRPA1 channels are also involved 

in sensation of cold along with TRPM8 channels (McKemy, 2005). 

The TRP channel family members that are closely related to Drosophila TRP 

channels are TRPC channel members. There are seven TRPC channels which are 

grouped into 4 categories. TRPC1, TRPC2, TRPC3/6/7 and TRPC4/5 are the 

categories of TRPC channels. They share a common feature of TRP box EWKFAR 

sequence near the C-terminal and 3-4 ankyrin repeats near the N-terminal (Zimmer et 

al., 2000). The TRP channels are non-selective to cations and are highly permeable to 

Ca2+ compared to Na+. The permeability depends upon the complexity of the ion 

channels where they form heterotetramers or homotetramers (Hofmann et al., 2002) 

(Strubing et al., 2001). The TRPC heterotetramers are mostly formed by TRPC1 and 

TRPC4/ TRPC5, TRPC4 and TRPC5 subfamilies. Some channels of TRPC are 

activated by  phospholipase C (Hofmann et al., 1999) and some are found to be 

activated by diacylglycerol (DAG) (Venkatachalam et al., 2002). The TRPC1 is 

expressed ubiquitously in multicellular organisms. It is found to be activated by different 

mechanisms and it is the channel which is mostly activated by store operated Ca2+ 

entry channels. The TRPC1 channel is insensitive to thapsigargin (Lintschinger et al., 

http://en.wikipedia.org/wiki/Phospholipase_C
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2000) and diacylglycerol (Yuan et al., 2003). TRPC3 channel is highly expressed in 

brain and is also present in smooth and cardiac muscles (Clapham, 2003). It is one of 

the channels which is stimulated by DAG and is also activated by T-cell receptor 

(Wedel et al., 2003). The TRPC3 channel is present in Na+/ Ca2+ exchanger (Rosker et 

al., 2004). TRPC4 and TRPC5 channels are expressed in brain and are activated by 

phospholipase C (Schaefer et al., 2000). High expression of TRPC6 is found in brain 

(Jia et al., 2007; Li et al., 2005; Zhou et al., 2008b) and lungs whereas the TRPC7 

channel is expressed in kidney and pituitary gland (Berg et al., 2007). The TRPC6 

and TRPC7 channels are closely related to each other. 

The TRPV channels also called vanilloid channels are found to be mostly 

involved in nociception. There are six TRPV channels TRPV1, TRPV2, TRPV3, 

TRPV4, TRPV5, and TRPV6. The expression levels of TRPV1 and TRPV2 channels 

are high expressed in spinal and peripheral nerve terminals and they are found to be 

sensitive to temperature and non-selective to cations (Planells-Cases et al., 2005). The 

vanilloid compounds like capsaicin and higher temperatures activate TRPV1 whereas 

TRPV2 is only activated by harmful temperatures (Caterina et al., 1999). The TRPV1 

and TRPV2 channels are present in the brain (Caterina et al., 1999; Kowase et al., 

2002; Steenland et al., 2006). The translocation of TRPV2 to the plasma membrane 

occurs when the channel is activated (Iwata et al., 2003; Kanzaki et al., 1999; 

Nagasawa et al., 2007). The TRPV3 channels are Ca2+ activated cationic channels 

which are sensitive to warm temperatures (Peier et al., 2002; Smith et al., 2002; Xu et 

al., 2002). The repeated activation of TRPV3 channels will cause sensitization. TRPV4 

channels are also activated by warm temperatures. TRPV4 channels are modulated by 
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CaM and ATP. The TRPV4 channels present in the hypothalamus, skin and primary 

sensory neurons are involved in sensing warm temperatures. The TRPV4 knockout 

mice express damaged bladder function. The other functions regulated by TRPV4 

include vascular tone, bone deposition and remodeling. 

The abundance of TRPV6 is much higher than TRPV5. These two members of 

TRPV family are inwardly rectifying cationic channels and are insensitive to heat and 

the highly permeable to Ca2+. These channels are sensitive to various secondary 

messengers like CaM, ATP, Mg2+ and protein kinases. The TRPV family members are 

expressed in kidneys. TRPV5 channels are crucial in active reabsorption and 

transcellular transport of Ca2+ in the distal convoluted loop and connecting tubules of 

kidneys. The TRPV6 reabsorbs Ca2+ in various areas of kidneys like cortical and 

medullary ducts of nephron and convoluted tubules. 

TRPM family consists of eight channel members which are grouped according to 

their amino acid sequence similarities. TRPM1 and TRPM3 belong to a group where 

both of these channel members are outwardly rectifying channels. These two channel 

members are expressed in brain whereas TRPM1 is also present in melanocytes and 

retina and TRPM3 is also expressed in pituitary and kidney (Oancea et al., 2009). 

TRPM2 channel is expressed in neurons and mutations in this channel causes 

neurodegenerative disorders (Kaneko et al., 2006; Olah et al., 2009). The levels of 

intracellular Ca2+ and oxidative stress activate TRPM2 channel. TRPM2 channel has a 

considerable role in monocytes chemotaxis (Hara et al., 2002). The only channel 

members of TRPM family that are selective to monovalent ions are TRPM4 and 

TRPM5 channels (Launay et al., 2002). These channels produce outwardly rectifying 
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current. The decrease in the intracellular pH inhibits TRPM5 channel whereas the 

increase in the levels of ATP inhibits TRPM4 channels. The expression levels of 

TRPM4 channels are considerable in brain and kidney whereas TRPM5 channels are 

mostly involved in taste reception (Perez et al., 2002; Reading and Brayden, 2007). 

TRPM6 and TRPM7 channels have protein kinase activity along with ion channel 

activity. These are outwardly rectifying channels inhibited by Mg2+ (Schlingmann and 

Gudermann, 2005). The extracellular acidic pH potentiates these channel members. 

The TRPM6 channels are highly expressed in kidneys and intestine where they play a 

considerable role in the reabsorption of Mg2+ in these areas. The role of TRPM6 in the 

closure of neural tube during development is critical (Walder et al., 2009). TRPM7 is 

mostly expressed in vascular smooth muscles and in sympathetic neurons where they 

have a considerable role in the release of neurotransmitters (Li et al., 2007). TRPM8 

channels are activated by cold temperatures and are expressed in many tissues 

(Bautista et al., 2007; Colburn et al., 2007; Dhaka et al., 2007). The TRPML channels 

are involved in compartment trafficking and are expressed intracellularly (Kim et al., 

2009). Most of the TRP channel currents are modulated at acidic pH conditions. 

 

1.7. Significance 

The current study was performed to test the expression of the pH/CO2-sensitive 

Kir and TRP channels in the LC neurons. Our results showed that several members of 

these two ion channel families were expressed in the LC neurons. The presence of 

these pH sensitive ion channels in the cells suggests their contributions to CO2 

chemosensitivity. 
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2. MATERIALS AND METHODS 

2.1. Acute Dissociation of LC Neurons 

LC-containing brain slices were obtained from C57BL/6 mice at age of 2-4 

weeks as described above (Zhang et al. 2010). The slices were then digested at 35oC 

for 30min-45min with papain (0.25%, type XI, Sigma) in oxygenated dissociation buffer 

containing (in mM) 140 NaCl, 2.5 KCl, 1 MgCl2, 1 CaCl2, 25 D-glucose, and 10 HEPES, 

pH 7.40. The slices were transferred to oxygenated dissociation buffer containing 1 

mg/ml papain inhibitor and washed twice with dissociation buffer. The LC area was 

micropunched and gently triturated in dissociation buffer with fire-polished Pasteur 

pipettes. The dissociation buffer containing triturated LC was dropped into 35-mm petri 

dishes and kept at room temperature for 10 min before being observed with Hoffman 

modulation optics. Individual neurons were harvested with patch pipettes and put into 

eppendorf tubes with solution containing 10× RT buffer, RNase free water and RNase 

OUT (4.5:4.5:1). The neurons were immediately frozen with liquid nitrogen and kept at - 

80oC for further experiments. 

 

2.2. Reverse transcription PCR and quantitative real-time PCR 

The LC regions were obtained by micro puncture of the pontine sections from 

WT mice. The tissue obtained from two mice was homogenized for 2min in solution 

provided in the RNeasy mini Kit (Qiagen). The total mRNAs from the tissue was 

extracted according to the manufacturer’s instructions (Qiagen). The concentration of 

the mRNA obtained was determined using spectrophotometer (absorption at 260 nm 

and 280 nm). The first strand of cDNA from the total mRNA was synthesized with 
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random hexamers as primers. The cDNAs obtained were used either for quantitative 

PCR (qPCR) or regular PCR. The qPCR primers were designed for the target genes 

using Primer3.0 software (Applied Biosystems, Warrington, UK). The qPCR was 

performed using Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen) on the ABI 

PRISM 7500 (Applied Biosystems) in the fast mode for the amplification of cDNAs 

according to the manufacturer’s instructions with 500nM prime. The endogenous 

control used in the quantitation of target genes was a house-keeping gene, GAPDH. 

The endogenous reference gene was run parallel with the targeted genes. Each gene 

was performed in quadruplets obtained from WT animal. The ∆CT method (where CT is 

threshold cycle) and GeneAmp 5700 SDS software were used for obtaining the data. 

The expression levels of the targeted genes were normalized to that of GAPDH (∆CT). 

The same set of primers was used for both qPCR and regular PCR with the difference 

in concentrations (Zhang et al. 2010). The other set of qPCR experiments were 

performed with specific primers. 
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Table 1. List of RT-PCR primers.

 

Target gene Primer Sequence Accession No. 

TRPC1 Fw: TGCAGATTTCAATGGGACAGAT NM_011643 

 
Re: CGTGAAGGAAAACAGAACAAGGA 

 TRPC3 Fw: GAAAGACACGGGCACAAAGC NM_019510 

 
Re: GGGTGAGCCACAAACTTTTTG 

 TRPC4 Fw: TTTCCACGTTATTCGAGACACTACA NM_016984 

 
Re: CGTGCTGGGCTTTGACATT 

 TRPC5 Fw: AAGGACCTCCCCCAACTGTT NM_009428 

 
Re: CACCATCCCACATTTCCTTTATC 

 TRPC6 Fw: TTCAGTAACCCTCCAAGACAATATCA NM_013838 

 
Re: TTATCAATCTGGGCCTGCAAT 

 TRPM2 Fw: CCGGAGAGGCTTGGTCAA NM_138301 

 
Re: CTGCTTCATCACGCCTGTGT 

 TRPM4 Fw:GCGCCTGCTGCACATCTT NM_175130 

 
Re:CAAGCCACACGCAGAGGAA 

 TRPM5 Fw: GGAGCCAGACAGCTTGGATATG NM_020277 

 
Re: CTTGGTGCCTCTGTTAGCTTCTC 

 TRPM6 Fw: TCAAGAGCCTCACCACCATTATT NM_153417 

 
Re: TTGGTGTAAACGGTATGGTCTGA 

 TRPM7 Fw: GACGATGGAGGATAGTGAAAACAA NM_021450 

 
Re: CCATCACTGCTGTCCAAAATCTT 

 TRPM8 Fw: CCCTGGCCAAAGTTAAGAATGAT NM_134252 

 
Re: CACTGCTCGGGTCTCATATTCA 

 TRPV1 Fw: GGCGACCATCCCTCAAGAG NM_001001445 

 
Re: GTACCACAGACACCAGCATGAAC 

 TRPV2 Fw:CCAGCCATTCCCTCATCAAA NM_011706 

 
Re: ATACCCCCAAGCAGGATCAGA 

 TRPV3 Fw: GAGACACCCCTGGCTTTGG NM_145099 

 
Re: GGAAGTGATGTCTGTCTGCTCATT 

 TRPV4 Fw: GAGAAAGGTCGTGGAGAAGCA NM_022017 

 
Re: GCCGATTGAAGACTTTGAGGAT 

 TRPV5 Fw: GAACACCACCAGGAGCAGAATC NM_001007572 

 
Re: TAGCTGCTCTTGTACTTCCTCTTTGT 

 Kir 2.2 Fw: CATTACAGCCCCAAGCCTCA NM_010603 

 
Re: GCCCGTCCTCCTCTGATGA 

 Kir 4.1 Fw: TGCCCCGCGATTTATCA NM_001039484 

 
Re: GGGCGGCTCTCTGTCTGA 

 Kir 5.1 Fw: GCTTCAGCTATTTTGCCCTCAT NM_010604 

 
Re: ACCGTGCCCTCTACCACATG 

 Kir 6.2 Fw: CGGAGAGGGCACCAATGT NM_010602 

 
Re: AAAGGAAGGCAGATGAAAAGGA 
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2.3. Polymerase Chain Reaction 

The polymerase chain reaction was performed to study the expression levels of 

the different TRP channels. The PCR reaction mixture contained 1.25µl dNTP, 2.5µl of 

DMSO (Dimethyl sulphoxide), 4µl MgCl2, 10µl of 5X green GoTaq Flexi byffer, 0.25µl 

Taq Polymerase enzyme (5U/µl), 2µl primer mix (1.0µg/µl), 2µl of template, 28µl of 

ddH2O for two tubes. The thermal cycling included initial activation at 95°C for 2min 

followed by denature, annealing and extension at 95°C for 30sec, 60°C for 30 sec and 

72°C for 2 sec respectively. The final extension was at 70°C for 10min and the 

number of cycles was 36. 

 

2.4. Single cell PCR 

scPCR was performed for LC neurons obtained by acute dissociation as 

described above. Two sets of primers were designed for the targeted genes using 

Primer3.0 software. The first PCR was performed using the One Step RT-PCR kit 

(Qiagen) for obtaining the cDNAs from the LC neuron cells. The second PCR was 

performed using Hotstar Taq DNA polymerase (Qiagen). The One Step RT-PCR 

reaction mix contained 10µl of 5X OneStep RT-PCR Buffer (pH 8.7), 10 µl of 5X Q-

solution, 2 µl of dNTP mix (containing 10mM of each dNTP), 1µl of primer mix 

(1.0µg/µl), 2 µl of OneStep RT-PCR Enzyme Mix (pH 9.0), 15µl of RNase Free H2O and 

finally 10µl of template was added to the mixture. The thermal cycling conditions 

included 30min of reverse transcription at 50°C followed by initial PCR activation at  

95°C for 15min. The three step cycling included denature and annealing at 94°C for 45 
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sec and 53°C for 45 sec respectively followed by extension at 72°C for 1 min and the 

final extension at 72°C for 10 min. The number of cycles performed was 30. The 

primers used were specific for the targeted genes. The Hotstar PCR reaction mixture 

contained 5µl of 10× PCR buffer, 1 µl of dNTP mix (containing 10mM of each dNTP), 

0.5µl of HotStar Taq DNA Polymerase, 10µl of 5X Q-solution, 1µl primer mix 

(1.0µg/µl), 0.5µl of template (cDNA) and made to 50µl with ddH2O. The thermal 

cycling included 40 cycles with initial PCR activation at 95°C for 15min followed by 

denature, annealing and extension steps at 94°C for 45sec, 53°C for 45sec and 72°C 

for 1min respectively. The final extension was at 72°C for 10min. 

 

Table 2. List of single-cell PCR primers. 

 

 

Target gene Primer Sequence Accession No. 

TH Fw: TTGGAGGCTGTGGTATTC NM_009377 

 
Re: GAAGTGAGACACATCCTCC 

 TH_NEST Fw: GAAGCCAAAATCCACC NM_009377 

 
Re: CCAGGTGGTGACACTTATC 

 Kir4.1 Fw: TAAGAAGAGGGCCGAGAC NM_001039484 

 
Re: CAGACGTTGCTGATGC 

 Kir4.1_NEST Fw: GTGGCTTCCCATAACG NM_001039484 

 
Re: TTTAAGGGGCTGGTCTC 

 Kir5.1 Fw: AAGAGAGCCCAGACCATAC NM_010604 

 
Re: CTCACAGCTGCTCACCA 

 Kir5.1_NEST Fw: CGATGGCGTTTAAAGACC NM_010604 

 
Re: CATCATGAAACCTGTGGC 

 TRPC4 Fw: AGGCTGGAGGAGAAGACACT NM_016984 

 
Re: TAGCAGCACGAGGCAGTAGA 

 TRPC4_NEST Fw: CACACAGCCTCCTATCTGAC NM_016984 

 
Re: TCAAGGAGATTGTTGCCAGA 

 TRPC5 Fw: TCCCAGCAATGTAAGCTC NM_009428 

 
Re: CTTGACATAGGCCACGAT 

 TRPC5_NEST Fw: CAGAAGTATCATGACCTGGC NM_009428 

 
Re: GGTTGCTTCTGGGTGAG 

 GFAP2 Fw: CAAGCACGAAGCTAACG NM_010277 

 
Re: CCCTTCCAATTCTAACCC 

 GFAP2_NEST Fw: GCCACCTACAGGAAATTG NM_010277 

 
Re: CACACCTCACATCACCAC 
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3. SPECIFIC AIM: To demonstrate the mRNA expression of various Kir and TRP 

channels in the LC neurons. 

A series of studies was performed to address this aim. First, the presence of 

specific Kir and TRP mRNAs in the LC tissue was determined using regular PCR. 

Second, the expression levels of the channels were quantified using qPCR. Third, sc 

PCR analysis was carried out to show that the channel mRNAs identified above were 

indeed located in catecholaminergic neurons in the LC, as specific antibodies are still 

unavailable for most to these K+ channels. 
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4. RESULTS 

4.1. Expression levels of various TRP channel mRNAs in LC using PCR and qPCR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Expression levels of various TRP channels in LC neurons using random 
primers in RT-PCR.  

A. All representative members in the TRPC, TRPM and TRPV families were included in 
the RT-PCR analysis. Several TRP channels were clearly detected in the mRNA level. Arrow 
head indicates 100bp. B. Analysis of TRP mRNA expression in the LC tissue with quantitative 
PCR (qPCR) indicated that the expression of TRPC5, TRPV2 and TRPV5 were several folds 
higher than other TRP channels. Data are presented as means ± s.e. (n = 16-20 samples from 5 
experiments). 
 

Previous studies have shown the presence of TRP channels in the central 

nervous system (Kunert-Keil et al., 2006). However, the expression of specific 

members of the TRP channels in the LC is still elusive. To investigate the expression 

of specific TRP channels in the LC area, we systematically studied all representative 

TRP channels in terms of the presence of mRNAs of these TRP channels in the LC 

tissue using regular PCR.  Brainstem slices were firstly obtained. After the LC was 
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identified based on its pontine location with the IV ventricle as a landmark, the LC 

area was isolated using micro-puncture. The LC tissue was then used for the mRNA 

extraction. The mRNAs obtained were subjected to RT- PCR to obtain cDNAs using 

random primers. The cDNAs produced were used as templates to detect the 

expression of TRP channels. To prove that the tissue contained LC neurons, a 

specific enzyme (tyrosine hydroxylase or TH) of these catecholaminergic neurons was 

examined in each sample obtained. Only those that showed a clear expression of TH 

were accepted for further studies. With such an approach, we found that several TRP 

channel mRNAs were highly expressed in the LC (Figure 8). 

Subsequently, the expression levels of various TRP channels were quantified 

using qPCR on the basis of the ∆∆CT method (Figure 4) .Consistent with our regular 

PCR tests, the TRPC5 mRNA was readily detected in the qPCR, whose expression 

level was highest among all TRP channels. The TRPM7 and TRPM2 mRNAs were 

found to be expressed at a moderate level in the LC tissue. The expression levels of 

TRPC1, TRPC3 and TRPV2 mRNAs were also detectable at low levels, whereas the 

expression levels of other TRP channel mRNAs were insignificant. 

 

4.2. Confirmation of TRP channel expressions using specific primers in RT-PCR 

 To further analyze of the TRP expression in the LC neurons, the expression of 

various TRP channel mRNAs was determined using primers specific for each TRP 

channel mRNA (Table 1). These studies also showed the highest expression of 

TRPC5 mRNA in the LC. The expression levels of several TRPV channels were 

remarkable followed by TRPC1 and TRPC3 mRNAs. The expression levels of TRPM2 
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and TRPM4 mRNAs were low, while the expression levels of other TRP channel 

mRNAs were undetectable. These results thus were consistent with our data in 

Section 4.1 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5. Expression levels of various TRP channels using specific primers in RT-PCR   

A. All representative members in the TRPC, TRPM and TRPV families were included 

in the RT-PCR analysis. Several TRP channels were clearly detected in the mRNA level. 

Arrow head indicates 100bp. B. Analysis of TRP mRNA expression in the LC tissue with 

quantitative PCR (qPCR) indicated that the expression of TRPC5 were several folds higher 

than other TRP channels. Data are presented as means ± s.e. (n = 16 samples from 4 

experiments). 
 

 

4.3. Expression levels of various Kir channel mRNAs in LC neurons  

 
The expression levels of various Kir channel mRNAs were similarly studied 
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using regular PCR and q PCR. Figure 6 shows the expression of Kir mRNAs in the LC 

tissue. The expression levels of Kir4.1 and Kir5.1 mRNAs in the LC neurons were high, 

especially the Kir4.1, whereas the expression levels of other Kir channel mRNAs were 

very low (Figure 6).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Expression levels of various Kir channels in the LC neurons  
A. The members of Kir channel family included for the study were Kir4.1, Kir5.1 due to 

their significant expression levels in the qPCR. Arrow head indicates 650bp. B. Analysis of 
various Kir channel mRNA expression in the LC tissue with quantitative PCR (qPCR) indicated 
that the expression of Kir4.1 were several folds higher than other Kir channels. Data are 
presented as means ± s.e. (n = 6-28 samples from 2-8 experiments). 
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4.4. Dissociation of LC neurons 
 
 

Since antibodies for the channels are still not available, the scPCR was 

performed to prove the presence of the expression of the Kir channels and TRP 

channels in the LC neurons. The LC neurons were dissociated from the LC tissue 

from mice. The LC tissue was digested with papain for 30min-45min at 37˚C and the 

inhibitor was then added to suppress the papain. The LC neurons were isolated in the 

dissociation buffer. After morphological studies with the Hoffman modulation optics 

(Figure 7), single LC neurons were harvested with patch pipettes and stored at -80˚C 

for further scPCR analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 7. The dissociated LC neurons 
The LC tissue was dissociated using Papain from WT mice. The dissociation buffer 

containing triturated LC was dropped into 35-mm petri dishes and kept at room temperature for 

10 min before being observed with Hoffman modulation optics. Individual neurons were 

harvested with patch pipettes and stored at -80
o
C for further experiments. 

 



27 
 

 

4.5. Expression levels of various TRP and Kir channels in LC neurons using 
 
scPCR 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Expression levels of various Kir and TRP channels in single LC neurons.  
A, C, E, G. A cell acutely dissociated from the LC tissue. Calibration: 50 µ. B, D, F, 

H. scPCR analysis showed that this cell was a TH-positive neuron, and expressed the TRPC5 
mRNA. Kir4.1 and Kir5.1 mRNAs were also seen in the cell. 
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Each single neuron was subjected to scPCR analysis for the expression levels 

of the Kir and TRP channel mRNAs with high levels of expression in the LC as shown 

in Sections 4.1 and 4.2. We found the high expression of TRPC5 mRNAs in the LC 

neurons. The expression levels of Kir4.1 and Kir5.1 mRNAs were rather heterogenous 

in LC neurons, with some cells showing the expression of Kir4.1 mRNA alone, Kir5.1 

mRNA alone, or both Kir4.1 and Kir5.1 mRNAs. The expression of TRPC4 mRNAs was 

much lower than TRPC5 (Figure 8). The high expression of TRPC5 mRNA was 

consistently seen in all LC neurons. 

 

4.6. Negative controls for the PCR experiments 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 9. Expression levels of various TRPC channel mRNAs in cardiac 
ventricular muscle tissue.  

All representative members in the TRPC families were included in RT-PCR. Only 
TRPC3 and TRPC1 mRNAs were detected in the cardiac ventricular muscle tissue. Arrow head 
indicates 100bp. (n = 3 experiments). 

 

The control experiments were performed to assure the conditions of the PCR. 

The previous studies have shown that the expression levels of various TRP channels in 

various tissues. The lack of expression of TRPC5 was found in the cardiac muscle cells 

(Kunert-Keil et al., 2006).  Therefore, RT-PCR experiments were performed to assure 
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the conditions of the PCR for the negative expression of TRPC5 in the cardiac muscle 

tissue.  Consistent with previous reports, our results did not produce positive bands in 

the cardiac ventricular muscles for TRPC5. The cardiac ventricular muscle tissue 

expressed TRPC3 mRNAs at a relatively high level followed by TRPC1 mRNAs. 

 

 

 

 
 
 
 
 
 
 
 
Figure 10. Negative control PCR experiments for highly expressed TRP channels.  

The negative control experiments were performed for three most abundant TRPs in LC. 

In the absence of template cDNAs, a weak and fuzzy band was found. In the presence of cDNA 

templates, a strong band was produced in each TRP, which was clearly larger than the primer 

band with expected size. Arrow head indicates 100bp. (n = 3 experiments). 

 

The second set of control experiment was performed to test whether the 

contaminations from primers affect the PCR reactions. The PCR experiments were 

performed without cDNA template in parallel to that of with cDNA template. In the 

absence of cDNA template, weak primer bands were observed. These fussy bands 

were greater than primers, suggesting the primer multimerization.  In the presence of 

cDNA templates, strong bands were found. These bands with expected sizes for each 

PCR product cannot be missed with the primer bands, because they were clearly larger 

than the primers bands and none of the primer bands were seen in the presence of 

cDNA templates. 
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5. DISCUSSION 

The breathing is a complex behavior with critical aspects like plasticity, 

rhythmicity and chemosensitivity. The chemosensitivity is important for the breathing 

process as it controls the levels of O2, CO2 and pH. According to the previous studies 

the LC neurons were involved in sensing the intracellular pH (Wang et al., 2001b). The 

pH sensing property of LC neurons indicates the involvement of LC neurons in 

controlling the chemosensitivity. The noradrenergic neurons present in the LC form the 

highest group of neurons that are excited by high levels of CO2/pH. Among the 80% of 

the noradrenergic neurons present in the LC region 64% of them responded to levels 

of CO2. This indicates the involvement of LC neurons in breathing as one of the 

chemosensitive sites. There are many signals that cause the chemosensitivity of LC 

neurons along with the change in the pH and levels of CO2. The hypercapnic 

conditions cause the increase in the firing activity of LC neurons. The sensing of the pH 

and the levels of CO2 is mostly due to the presence of various ion channels like inward 

rectifying K+ channels (Jiang et al., 2001) and TRP channels. The Kir channels, Kir 4.1 

and Kir 5.1 are found to be highly expressed in the brain (Xu et al., 2000). The Kir 4.1 

channel member and Kir4.1-Kir5.1 heterodimers are inhibited at the high levels of CO2 

(Xu et al., 2000). So the presence of various Kir channels was studied in the LC 

neurons. The expression of Kir channel members in the LC neurons indicates their role 

in the chemosensitivity. The experiments performed included qPCR and scPCR which 

shows the expression of mRNAs in the LC neurons. The results indicated the presence 

of Kir4.1 and Kir5.1 in the LC neurons which demonstrates their role in the 
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chemosensitivity. The activation of cationic channels also causes the firing activity of 

the LC neurons. The major cationic channels include the TRP channel members. Most 

of the TRP channel members are expressed in the brain (Strubing et al., 2001; Zhou et 

al., 2008a). Some of the TRP channels respond to the changes in the levels of pH 

(Andersson et al., 2004; Kim et al., 2008; Semtner et al., 2007). So the experiments 

were performed to study the expression of various TRP channel members. The data 

obtained shows the expression of most of the representative members of TRP 

channels in the LC neurons with the high expression levels of TRPC5 mRNA.  

The control experiments in the cardiac ventricular muscle tissue with the 

negative expression of TRPC5 mRNA confirmed the conditions of the PCR. The 

expression of TRPC3 and TRPC1 mRNAs without the presence of TRPC5 mRNAs in 

the cardiac ventricular muscle tissue according to the previous studies assure the high 

expression of TRPC5 mRNAs in the LC tissue. The negative expression of TRPC5 

mRNAs in the cardiac ventricular muscle tissue even with the second set of TRPC5 

primers assures the accuracy of the primers used in the PCR. The absence of strong 

bands without cDNA template in the PCR reactions assures the absence of 

contamination from primers. The fuzzy bands with sizes greater than that of primers 

show the multimerization of primers. The previous studies show the ability of Taq 

polymerase for the reverse transcription and direct amplification of mRNA (Jones, 1993; 

Tse and Forget, 1990). Therefore, the negative control experiments cannot be 

produced without the reverse transcriptase in RT-PCR reactions. 

The high expression levels of TRPC5 in the LC neurons were confirmed with 

scPCR experiments. The expression levels of TRPC5 showed consistency in qPCR 
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and scPCR which indicates the presence of TRPC5 in LC neurons. So the expression 

of various TRP channel members and Kir channel members in the LC neurons 

indicates their role in the chemosensitive property of LC neurons. 
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