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ABSTRACT 

The analysis of longitudinal data has been a popular subject for the recent years.  

The growth of the Generalized Estimating Equation (GEE) Liang & Zeger, 1986) is one 

of the most influential recent developments in statistical practice for this practice.  GEE 

methods are attractive both from a theoretical and a practical standpoint.  In this paper, 

we are interested in the influence of different “working” correlation structures for 

modeling the longitudinal data.  Furthermore, we propose a new AIC-like method for 

the model assessment which generalized AIC from the point of view of the data 

generating.  By comparing the difference of the log-likelihood functions between 

different correlation models, we define the exact n~  value to create an interval for our 

model selection.  In this thesis, we combine the GEE method and a new generalized 

AIC Index for the longitudinal data with different correlation structures. 
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Chapter One: Introduction 

 

There was a huge growing interest in the collection of longitudinal data for the 

last three decades of the 20th century and the statistical analysis of longitudinal data has 

been the topic of numerous statistical papers in recent years. Several books on the topic 

have also been published, for example Diggle et al. (1994) and Jones (1993). Such data 

naturally occur when repeated observations are taken on individuals, or the data is taken 

on clusters or groups of subjects sharing similar characteristics. One of a great method 

dealing with longitudinal data is the generalized estimating equations (GEE) method. 

The GEE method introduced by Liang and Zeger (1986) have been widely used over the 

past decade to analyze longitudinal data. The method uses a generalized quasi-score 

function estimate for the regression coefficients, and moment estimated for the 

correlation parameters. About the model selection, there are a lot of methods we may 

use.  In this paper, we will apply the generalized AIC Index for the best model selection. 

In other words, we combine the GEE method and the generalized AIC Index for our 

longitudinal data study.  

I organized this thesis in following order. Chapter one is the Introduction, which 

lists the motivation and the main ideas. Chapter two is the definition of the longitudinal 

data and the GEE method. The background information is listed on the Chapter three 

which discuss the Model selection and generalized AIC statistic method. After all the 

definitions and methods are explained, the simulation study is arranged in Chapter four. 

Chapter five we use the same method for the real data and test the effect of our 
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methodology. The last chapter is the conclusion which discusses the result of our study 

and also mention about some relative future researches 
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Chapter Two: Longitudinal data 

 

A longitudinal study is a correlational research study that involves repeated 

observations of the same items over long periods of time, often many decades. 

Longitudinal studies are often used in psychology and biology to study developmental 

trends across the life span. It may be difficult to develop formal models to summarize 

trends and covariance, yet there may be rich information in the data. 

2.1 Longitudinal Data Analysis 

In longitudinal data individuals are repeatedly measured through time which 

enables the direct study of change (Diggle, Heagerty, Liang & Zeger 2002). Each 

individual will have certain special characteristics, and measurements on several topics 

or variables may be taken each time an individual is measured. The reporting times can 

be different from individual to individual in number, dates and time between reporting. 

This deviation from equal-spaced, equal quantity time points, producing a ragged time 

indexing of the data, is common in longitudinal studies and it causes grief for many data 

analysts. Researchers have done much works on this kind of study. For example, Rao 

(1965), Grizzle and Allen (1969), and Hui (1984) have discussed methods based on 

fitting growth curves to the repeated observation for each subject, Fearn (1975) 

discussed a Bayesian approach to growth curve modeling, Harville (1977) and Laird 

and Ware (1982) developed random-effects models in which repeated observations for a 

subject are assumed to share a common random component, Azzalini (1984) discussed 

models in which autoregressive error structure was assumed where the auto correlation 

decreases as a geometric function of the time between two observations. Ware (1985) 
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has also presented an overview of linear models for Gaussian longitudinal data. One 

possible objective of statistical analysis is to describe the marginal expectation of the 

outcome variable as a function of the covariates while accounting for the correlation 

among the repeated observations for a given subject. With the outcome variable being 

approximately Gaussian, a large class of linear models is available for analysis. 

2.2 Quasi-Likelihood 

            Before introducing the Generalized estimating equation, the basic idea of this 

methodology is Quasi-likelihood approach. Quasi-likelihood was first proposed by 

Wedderburn (1974) and later examined extensively by McCullagh (1983). It is a 

methodology for regression that requires few assumptions about the distribution of the 

dependent variable and hence can be used with a variety of outcomes. In quasi-

likelihood, we distinguish only the relationship between the outcome mean and 

covariates and between the mean and variance. Consider the observations ijy for time ijt , 

inj ,...,1= and subjects Ki ,...,1= . Here ijy  is the outcome variable and ijx  is a 1×p  

vector of covariates. Let 
iy  be the 1×in  vector )',...,( 1

i
ini yy  and 

ix  be the pni ×  

matrix )',...,( 1 iini xx  for the ith subject. Define iu  to be the expectation of iy  and 

suppose that 

)( βii xhu =  

where β  is a 1×p  vector of parameters. The inverse of h  is referred to as the “link” 

function (McCullagh and Nelder, 1983). In quasi-likelihood, the variance, iv , of iy  is 

expressed as a known function, g, of the expectation, 
iu , i.e., 
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φ/)( ii ugv =  

where φ  is a scale parameter. Since we only focus on β , φ  is treated as a nuisance 

parameter. 

The quasi-likelihood estimator is the solution of the score-like equation system 

∑
=

− =−
∂

∂
=

K

i

iii

k

i

k uyv
u

S
1

1
,0)()(

β
β   pk ,...,1=                           (2.1) 

The solution can be obtained by an iteratively reweighted least squares. The 

resulting estimator is asymptotically Gaussian under mild regularity conditions 

(McCullagh, 1983) 

2.3 Generalized Estimate Equation Method 

The GEE method of Liang and Zeger (1986) is a conceptually and notationally 

straightforward generalization of quasi-likelihood regression to longitudinal responses. 

To apply the quasi-likelihood approach to the analysis of longitudinal data, we must 

consider the mean and covariance of the vector of responses, iy , for the ith subject. Let 

)(αiR  be the ii nn ×  working correlation matrix for each iy , where α  is an unknown 

parameter. Of course the observation times and correlation matrix may differ from 

subject to subject. The working covariance matrix for iy  is given by 

2/12/1
)( iii ARAVi α=                                                         (2.2) 

where iA  is an ii nn ×  diagonal matrix with )( ijug  as the jth diagonal element. We 

would like estimators that are consistent and have consistent variance estimates even 

when )(αiR  is incorrect. Our extension of equations (2.1) to the longitudinal data case 

is given by 
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∑
=

− =
K

i

iii SVD
1

1
0'                                                             (2.3) 

Here ii uySi −=  with )',...,( 1 inii uuu =  and
β∂

∂
= iuDi . 1' −ViDi  does not depend on the 

y’s generally, so that equations (2.3) converge to 0 and hence have consistent roots as 

long as 0=ESi . For Gaussian outcomes equations (2.3) are the score equations for β . 

While the estimating equations depends on α  as well as β , they can be expressed as a 

function of β  along by first replacingα  in equations (2.2) and (2.3) by a 2/1K -

consistent estimator, ),,(ˆ φβα Y , and then replacing φ  in α̂  by a 2/1K -consistent 

estimator, ),(ˆ βφ Y . For any given )(αiR , the estimate, 
Rβ̂ , of β  is defined as the 

solution of 

( )[ ]{ } 0ˆ,ˆ,
1

=∑
=

K

i

iU βφβαβ                                                    (2.4) 

Under mild regularity conditions, Liang and Zeger (1986) show that as 

∞→K  , Rβ̂  is a consistent estimator of β  and that )ˆ(
2/1 ββ −RK  is 

asymptotically multivariate Gaussian with covariance matrix RV  given by 

)(lim

)']()cov('[)'(lim

1

10

1

1

1

1

1

1

111

1

1

−−

∞→

−

=

−

=

−−−

=

−

∞→

=

= ∑∑∑

VVVK

DVDDVyVDDVDKV

K

K

i

iii

K

i

iiiii

K

i

iii
K

R

           (2.5) 

where the covariance of 
iy  is the actual rather than the assumed covariance. To solve 

the GEE for Rβ̂ , we iteratively solve for the regression coefficients and the correlation 

and scale parameters, α  andφ . Given an estimate of )(αiR  and ofφ , we can calculate 
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an updated estimate of β  by iteratively reweighted least squares as described by 

McCullagh and Nelder (1983). Given an estimate of β , we can calculate standardized 

residuals, jjijijij Vuyr ]ˆ[/)ˆ(
1

1

−−= , which are used to consistently estimate α  and φ . 

These two steps are iterated until convergence. 

In this paper, we specify that a known function of the marginal expectation of 

the dependent variate is a linear function of the covariates, and assume that the variance 

is a known function of the mean. In addition, we specify a “working” correlation matrix 

for the observations for each subject. This set-up leads to generalized estimating 

equations (GEEs) which give consistent estimators of the regression coefficients and of 

their variances under weak assumptions about the actual correlation among a subject’s 

observations. 

2.4 Gaussian assumption 

We apply a simply linear regression ijijiijij exy += β  to our simulation step in 

this paper, where i is the subject number and j is for time point. Our strategy for 

parameter estimation in the general linear model is to consider simultaneous estimation 

of the parameter of interest, β , and of the covariance 0V .parameters, 2σ  and 0V , using 

the likelihood function, where V is a block-diagonal matrix with common non-zero 

blocks. The general linear model for longitudinal data treat y as a realization of a 

multivariate Gaussian random vector, Y, with 

),(~ 2VXMVNY σβ  
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In our simulation study progress, we suppose the data is Gaussian distribution, 

that is, a normal distribution. Since our data may not only have one variable, we use 

multiple-normal distribution to generate our data.  

2.5 Covariance (Correlation) Selection 

Since the GEE method is much related to the “working” correlation matrix. We 

may use different correlation matrices to test the results. There are tons of correlation 

structures in our Mathematics and Statistics field. In this thesis, we use four common 

correlation structures such as Independent, Compound symmetric, Toeplitz and 

Unstructured. For our simulation study, we consider both a 22 ×  and a 44 ×  

correlation models. In a simple 22 ×  simulation, we only have two different correlation 

structures which are independent and Compound symmetric correlation; however, we 

may have four different correlation structures as in a 4x4 model. All the correlation 

matrices and parameter number are listed below: 

For 22 ×  models 

Independent 










10

01
 

Parameter number: 0 

Compound symmetric 










1

1

ρ
ρ

 

Parameter number:1 

For 44×  models: 
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Independent 



















1000

0100

0010

0001

 

Parameter number: 0 

 

Compound symmetric 



















1

1

1

1

ρρρ
ρρρ
ρρρ
ρρρ

 

Parameter number: 1 

 

Toeplitz 



















1

1

1

1

123

112

211

321

ρρρ
ρρρ
ρρρ
ρρρ

 

Parameter number: 3 

Unstructured 



















1

1

1

1

653

642

541

321

ρρρ

ρρρ
ρρρ
ρρρ

 

Parameter number: 6 
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We use these different correlation matrices to be our working correlation matrices in 

our simulation study. 
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Chapter Three: Background Information 

 

Model selection is the task of selecting a statistical model from a set of potential 

models, given data. In its most basic forms, this is one of the fundamental tasks of 

scientific inquiry. Determining the principle behind a series of observations is often 

linked directly to a mathematical model predicting those observations.  

Goodness-of-fit is generally determined using chi-square statistics. The complexity is 

generally measured by counting the number of free parameters in the model. 

Model selection techniques can be considered as estimators of some physical quantity, 

such as the probability of the model producing the given data. The bias and variance are 

both important measures of the quality of this estimator. Asymptotic efficiency is also 

often considered. A standard example of model selection is that of curve fitting, where, 

given a set of points and other background knowledge (e.g. points are a result of i.i.d. 

samples), we must select a function that describes the best curve. 

3.1 Model Selection 

Lindsay and Liu (2005) emphasize the point of view that the models under 

consideration are almost always false, if viewed realistically, and so we should analyze 

model adequacy from that point of view. They investigate this issue in large samples by 

looking at the Generalized AIC indices, which are designed to serve as one-number 

summary measures of model adequacy. They also define these index to be the 

maximum sample size at which samples from the model and those from the true data 

generating mechanism are nearly indistinguishable. Those definitions lead us to some 

new ways of viewing models as flawed but useful. 
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3.2 Generalized AIC Index 

Our next context is to find the n~ . Before testing to generate a Generalized AIC 

index, we assess the quality of a particular model element θm , the one that best 

approximates the true sampling distributionτ . As an alternative to this approximation 

question, one could ask how well 
θ̂

m  approximateτ , where θ̂   is an estimator of θ . 

Because of the randomness of θ̂ , the accuracy of this approximation is a random 

quantity. The testing indices there estimated the AIC of the best independence model 

where “best” meant using the best parameter values, which are unknown. We may ask: 

How well will the model, using estimated parameters, fit future samples fromτ . With 

this perspective, Akaike (1974) proposed the AIC index which adds the dimension of 

the model as a penalty to the negative of the maximized loglikelihood. 

δδδ kmMAIC 2)(ˆ2)( +−= l                                              (3.1) 

In this section, we notated that }:{ ∆∈Μ δδ for a class of models indexed byδ , where 

each model depends on some finite number )(δkk = of real parameters. And δk is the 

number of parameters of the model (dimension), and )(ˆ
δml  is the loglikelihood for 

model δm , evaluated at the maximum likelihood estimators. The selection of a model 

based on this criterion is conventionally done by selecting the model with the smallest 

value of AIC. 
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We define the relative risk in using model M, together with parameter estimators 

θ̂ , at sample size n, to be 

                                     ∫∫ −−= dxx
m

m
dxxxmnMR )(log)()(log),(

ˆ

ˆ ττ
θ

θ
θ

                  (3.2) 

                                                   =          A                +               B 

Hence the theoretically best AIC model in ),( nMR , could be a false model (if the first 

term is positive), and could very well depend on n. The theoretically best AIC model 

δM  in terms of ),( nMR δ , minimizes the risk over δ . 

Equation A is asymptotically equivalent to 
n

k

n 2

ˆ
+−

l
 and equation B is 

asymptotically equivalent to 
n

k

2
. Consider we simulate samples from model or from 

true distribution at new sample size n~ , the parameter then estimate from data of size n~ . 

The second term in (3.2) hence is 
n

k
~2

. 

The AIC would depend on sample size n. Our generalization of AIC would 

simply estimate the relative risk at all sample size n~  via the formula: 

                                       n
n

k

n

k

n
nmAICGAIC 2*]~22

ˆ
[)~,( ++−==

l

δ                        (3.3) 
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The conventional AIC estimates the risk at nn =~ . Under this setting we would expect 

the best model to depend on the choice of n~ . For example, the best model at target 

sample size n~ =500 is then a property of the class of models considered and the true 

data mechanism, but not the de facto sample size n. 

                We now turn the generalized AIC criterion into a sample size index. To 

simplify matters, we first reduce our attention to the best model of each fixed size. We 

define the standardized maximum loglikelihood kl̂  to be 

kl̂ = max loglikelihood of all k-dimensional candidate models 

And we let )(ˆ kM  represent the best model of size k. In order to find the best AIC 

model, we minimize over k. 

If follows that saying )(ˆ kM  is better than )1(ˆ −kM  is equivalent to 

n

k

n

k

nn

k

n

k

n

kk

~22

ˆ

~2

)1(

2

)1(ˆ
1 ++

−
≥

−
+

−
+

− − ll
 

That is, 

                                               
nnnn

kk

2

1ˆˆ

~2

1 1 −−≤ −ll
                                                     (3.4) 

If the right-handed side in (3.4) is negative, then )(ˆ kM  is worse than )1(ˆ −kM  for all 

value of n~ . On the other hand, if the right-handed side in (3.4) is positive, we obtain a 
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range of n~  values for which )(ˆ kM  is better than )1(ˆ −kM . After a little transformation 

we may find 

)))1(()ˆˆ(2/())1((~
1 kkkknn kk −−+−−−= −ll                              (3.5) 

Since the value of the GAIC index n~  could depend strongly on the test statistic 

that is being used. If we wish n~  reflect usefulness of the model, then the test statistic 

must be sensitive to those model failures which we consider most important. It is 

obvious that nn ≤≤ ~0 . If the n~  computed from (3.5) is out of the range ],0[ n , it means 

)(ˆ kM  is not better than )1(ˆ −kM . 

We are interested about the result by the combination of GEE and the GAIC. 

For the next section, we will use this model selection technique combine the GEE 

method to do the simulation. 
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Chapter Four: Simulation 

 

In order to test our method, we start with a simple case which is a 22×  

correlation matrix. In other words, there are only two different correlation structures 

such as independent and Compound symmetric. After the simple simulation, we apply 

our method to a more complicated case which is a 44 ×  correlation matrix. We may 

have four different correlation structures of this case such as independent, Compound 

symmetric, Toeplitz and unstructured. The goal for us is to find the best model by 

comparing the n~  table and lack of fit curve in each sample size. 

4.1 Simulation for 2x2 models 

Our starting point is the data in Table 4.1 of Rencher (1995). The data consists of blood 

glucose measurement (y) at two time points and the glucose measurement one hour 

after sugar intake (x). We fit a simple linear regression model between y and x for the 

data using the GEE method with identity link function ))(( uug = , and totally 

unspecified working correlation structure. We suppose x is a random Gaussian 

distribution with sample size equal 2, mean equal 100 and 20 is the standard deviation. 

Then we generate ijy  by the equation 

ijiij exy ++= 1098.01                                                   (4.1) 

where ),( 21 iii eee =  is a multivariate random normal distribution with covariance w. 

Furthermore, before testing the method, we need to choose two different correlations to 

simulate our data, which are close to independent and Compound symmetric correlation. 
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The first correlation matrix 1w  = 








101.0

01.01
, that is a very close to independent 

correlation. We simulate subjects which have two correlated measurements each at size 

.n =200, 500, 800, 1000. By using the GEE method, we keep updating the “β” in an 

error range of 610− . The program will only stop when the difference within new β and 

old β is less than our error range. Finally, we may construct our GAIC n~  by computing 

the Loglikelihood for both models. Follow the equations (3.5), our new n~  equation is 

))1()(2/()1(~ kkLLELLkknn −+−−=                                   (4.2) 

where n is the sample size, k and LL represent the parameter number and loglikelihood 

for Independent case; k1 and ELL represent the same thing but for Compound 

symmetric case.  

We use S-plus software to do the simulation for us; the code is listed in Appendix A. 

The result is listed as table 4.2. 

Table 4.1  n~  values for correlation structure 1w )01.0( =ρ  

Independent Simulation Model 

Sample size Independent vs. Compound symmetric 

200 -0.001889143 

500 -0.00517425 

800 -0.009782553 

1000 -0.01578773 

 

If the n~  value is smaller than 0, we may use the correlation matrix with lower 

parameter numbers as well. Otherwise, we may use the correlation matrix with higher 

parameter numbers. Follow the table 4.2 we may see that all the n~  values are negative 

numbers. This tells us that we may use Independent correlation to be our best model. 



 

 

                                                                                                                                          

 

                                                                                                                                         18 

 

After finishing the Independent simulation model, we are interested about 

Compound symmetric simulation model. We do the same steps with Compound 

symmetric correlation model for which w= 








13.0

3.01
. We generate n=200, 500, 800 

and 1000 data to do our test. The result is listed as table 4.3  

Table 4.2  n~  values for correlation structure 
2w )03.0( =ρ  

Compound symmetric Simulation Model 

Sample size Independent vs. Compound symmetric 

200 -0.01124281 

500 -0.02334381 

800 -0.02650104 

1000 -0.02232003 

 

From the output table, we can see that all the n~  values are negative numbers. 

We may make a conclusion, that is, no matter what our sample size is, we still may use 

the independent correlation models. 

4.2 Simulation for 4x4 Models 

For a 44 ×  correlation matrix, there are several different correlation models, 

such as independent, Compound symmetric, Toeplitz and unstructured.  We first 

generate a Gaussian distribution of 8000 numbers to be our four times of x variables. 

The regression equation we used is still ijiij exy ++= 1098.01  for ni ,...,1= ; 4,...,1=j . 

In order to compare the difference between sample sizes, we do the sampling from these 

8000 observations. We choose 200, 500, 800 and 1000 to be our four different sample 

size. Each subject in the sample has four related measurements. Since we have already 



 

 

                                                                                                                                          

 

                                                                                                                                         19 

 

simulated independent and Compound symmetric correlation structures in 4.1, we just 

choose another two complex correlation structure models. 

4.21 Toeplitz Simulation Models 

The starting correlation matrices 3w  =



















14.069.015.0

4.0139.07.0

69.039.014.0

15.07.04.01

. Then we use 

GEE method to estimate the equation and find the loglikelihood in each kind of 

correlation models. In order to apply this correlation matrix to GEE method, we need to 

make sure our matrix is positive definite. Since 1723003.0)3det( =w , we may continue 

our simulation steps. The equation (4.1) only compares the independent to the 

Compound symmetric correlations models. Since we have two more correlation 

structures right now, we also need two more equation to find n~ by comparing the 

Compound symmetric to Toeplitz and Toeplitz to unstructured correlations. The 

equation (4.3) is used for compute the n~ value between Compound symmetric to 

Toeplitz and equation (4.4) is used to compute the n~ value between Toeplitz to 

unstructured. 

))21()(2/()12(~ kkELLCLLkknn −+−−=                                (4.3) 

))32()(2/()23(~ kkCLLULLkknn −+−−=                                (4.4) 

where n is the sample size, k1 and ELL represent the parameter number and 

loglikelihood for Compound symmetric case; k1 and CLL represent the same thing but 
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for Toeplitz case;  k2 and ULL are for Unstructured case. The S-plus code is listed in 

Appendix B. The n~  result is listed as Table 4.3 and Table 4.4. 

Table 4.3  n~  values for correlation structure 3w  

correlation structure 3w  

Sample 

size 

Independent vs. 

Compound symmetric 

Compound 

symmetric vs. 

Toeplitz Toeplitz vs. Untructured 

200 1.702304 1.939537 -121.5784 

500 1.409049 1.830033 -236.4277 

800 1.484285 1.997326 -258.6532 

1000 1.384215 1.846223 -136.116 

Table 4.4  Best model selection for correlation structure 3w  

correlation structure 3w  

Sample 

size 
Independent 

Compound 

symmetric 
Toeplitz Unstructured 

200 
(0, 1.702304) (1.702304, 1.939537) (1.939537, 200) - 

500 
(0, 1.409049) (1.409049, 1.830033) (1.830033, 500) - 

800 
(0, 1.484285) (1.484285, 1.997326) (1.997326, 800) - 

1000 
(0, 1.384215) (1.384215, 1.846223) (1.846223, 1000) - 

Follow Table 4.4, we may divide our conclusion into four different sample sizes.  

1) For n=200, one may use independent correlation model when n is less than 1.7; for n 

between 1.7 to 1.9, we may choose the Compound symmetric correlation model and for 

sample size n greater than 1.9, the Toeplitz correlation model will be our best selection. 

The last column of Table 4.3 are all negative numbers, we may skip this comparison. 
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2) For n=500, we may use independent correlation model when n is less than 1.4; for n 

between 1.4 to 1.8, we may choose the Compound symmetric correlation model and for 

sample size n greater than 1.8, the Toeplitz correlation model will still be our best 

selection. 

3) For n=800, we may choose independent correlation model when n is less than 1.5; 

for n between 1.5 to 2, we may use the Compound symmetric correlation model and for 

sample size n greater than 1.8, we can use the Toeplitz correlation model as well. 

4) For n=1000, we may use independent correlation model when n is less than 1.4; for n 

between 1.4 to 1.8, we may choose the Compound symmetric correlation model and for 

sample size n greater than 1.8, the Toeplitz correlation model will still be our best 

selection. 

For the overall of the result, we may say that for a very small sample size n less 

than 1.4, we can just use independent correlation as well; for size n between 1.4 to 2, we 

need to use the Compound symmetric correlation model; and for n greater than 2, we 

may use Toeplitz correlation model as well. Furthermore, we can see that this method 

can effectively find the corresponding correlation structured. 

In order to see the change of loglikelihood value in different models, we also 

plot a graph as Figure 4.1 for connecting all the four likelihood value in the 

corresponding model. The vertical axis W is the loglikelihood values within four 

different models and the horizontal axis Q is the number of the parameters. 
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N=200 

 

N=500 

 

N=800 

 

N=1000 

Figure 4.1 The model lack of fit curve for correlation structure 3w  

4.22 Unstructured Simulation Models 

The last model is the unstructured correlation model. We just change our 

starting correlation 
4w  = 



















13.001.06.0

3.0175.027.0

01.075.014.0

6.027.04.01

. We still need to check our matrix 
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is positive definite. Since 1288293.0)4det( =w , we may continue our simulation steps. 

Repeat all the rest steps and output our result as Table 4.50, Table 4.6 and Figure 4.2 

Table 4.5  n~  values for correlation structure 4w  

correlation structure 4w  

Sample 

size 

Independent vs. 

Compound symmetric 

Compound 

symmetric vs. 

Toeplitz Toeplitz vs. Untructured 

200 1.815224 2.266745 6.56367 

500 1.748966 2.025032 8.973657 

800 1.623625 2.09331 7.455487 

1000 1.579191 1.8607 9.691426 

Table 4.6  Best model selection for correlation structure 4w  

correlation structure 4w  

Sample 

size 
Independent 

Compound 

symmetric 
Toeplitz Unstructured 

200 
(0, 1.815224) (1.815224, 2.266745) (2.266745, 6.56367) (6.56367, 200) 

500 
(0, 1.748966) (1.748966, 2.025032) (2.025032, 8.973657) (8.973657, 500) 

800 
(0, 1.623625) (1.623625, 2.09331) (2.09331, 7.455487) (7.455487, 800) 

1000 
(0, 1.579191) (1.579191, 1.8607) (1.8607, 9.691426) (9.691426, 1000) 

For the overall of the result, we may find out that all the n~  value for the first 

three correlation structures are very small. Therefore, when n is greater than 10, we may 

use Unstructured correlation model to be our best model. 



 

 

                                                                                                                                          

 

                                                                                                                                         24 

 

 

N=200 

 

N=500 

 

N=800 

 

N=1000 

Figure 4.2 The model lack of fit curve for correlation structure 
4w   

From Figure 4.2, we can see that there still exist a little difference between 

the loglikelihood values in each correlation models. To sum up, the n~  value has found 

the corresponding correlation structure in a short time by our simulation result. Take the 

result table 4.3 for example, we may choose the Toeplitz correlation while n is greater 

than 2. We could consider this working correlation structure 3w  maybe too close to our 

Toeplitz correlation. Due to this result, we may test a new correlation which is between 

Compound symmetric and Toeplitz correlation structures. The correlation structure we 
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test 5w =



















11.008.005.0

1.0107.01.0

08.007.011.0

05.01.01.01

. We use the same methodology to test this new 

correlation structure and construct the n~  value as table 4.7; furthermore, we put our 

best model selection as table 4.8. 

Table 4.7  n~  values for correlation structure 5w  

correlation structure 5w  

Sample 

size 

Independent vs. 

Compound symmetric 

Compound 

symmetric vs. 

Toeplitz Toeplitz vs. Untructured 

200 65.6931 99.30862 - 

500 97.6872 143.2394 - 

800 91.89772 151.0378 - 

1000 90.21411 144.2176 - 

Table 4.8  Best model selection for correlation structure 5w  

correlation structure 5w  

Sample 

size 
Independent Compound symmetric Toeplitz Unstructured 

200 
(0, 65.6931) (65.6931, 99.30862) (99.30862, 200) - 

500 
(0, 97.6872) (97.6872, 143.2394) (143.2394, 500) - 

800 
(0, 91.89772) (91.89772, 151.0378) (151.0378, 800) - 

1000 
(0, 90.21411) (90.21411, 144.2176) (144.2176, 1000) - 

Under table 4.8, we shall conclude that for a small sample less than 90, we could 

use the independent correlation model; for sample size between 90 and 145, we shall 

choose the Compound symmetric correlation model; for sample size greater than 145, 
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we choose Toeplitz correlation as our best model. Comparing the result in table 4.5 and 

table 4.7, it is obviously that the power of finding the corresponding correlation 

structure strongly depends on the working correlation we set.  

After finishing the simulation study, we may use a real data to prove our method. 

Chapter five we will put our method into practice, in other words, we use a real data to 

test our methodology. 
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Chapter Five: Real data 

 

After the simulation step, we still need to put our methodology into a real data 

which exist in our true living. In order to test our method, we find a biological data from 

a hospital. This is a biological data from Weiss (2005) which discuss the relationship 

between several variables and the systolic blood pressure.  

5.1 Data Background 

The response variable of this data is the systolic blood pressure (SYS). 

Observations are taken repeatedly on nurses over the course of a day. This data set has 

data taken during the first day of participation and during their waking hours. At each 

blood pressure reading, the nurses also rate their mood on several dimensions and 

record their posture. A machine records the average number of motions per minute 

made by the subjects during the preceding 5 minutes, called MNACT5. Also available 

are phase and day, but they are not to be included in this analysis. Two of the mood 

variables Happy (HAP) and Stress (STR) are ratings on a 1-5 scale by the subjects of 

how they feel at the moment that the blood pressure measure is taken. POSTURE is 

coded as SIT, STAND or RECLINE. MNACT5 should be included in the analysis, but 

we are not interested in drawing conclusions about it. Family History, FH123, is coded 

NO, YES, or YESYES if 0, 1 or 2 respectively of the subject’s parents had a history of 

hypertension. Our study is to describe how the MANCT5, moods, POSTURE, AGE and 

FH123 affect the systolic blood pressure. 
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5.2 Result 

In order to complete this study, we choose all the six variables such as 

MANCT5, POSTURE, HAP, STR, AGE and FH123 to be our explanatory variables. 

Considering the POSTURE and the FH123 variables both contain three categories, we 

use the dummy variable to separate them to two variables each. The response variable is 

still the systolic blood pressure (SYS). By the regression method, our equation will be 

ijij exxxxxxxxxy +++++++++= 998877665544332211 βββββββββ  

where all the variables have been coded as Table 5.1 

Table 5.1 Summary of variables coding 

1x  Vector with all constant equal 1 

2x  MANCT5 

3x  POSTURE-1(Dummy variable) 

4x  POSTURE-2(Dummy variable) 

5x  Family History 123-1(Dummy variable) 

6x  Family History 123-2(Dummy variable) 

7x  STR 

8x  HAP 

9x  AGE 

ije  Error term 
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We still apply our GEE method and the Generalized AIC index to this real data, and we 

randomly choose six different time points to each subject. The n~  result and the best 

model selection interval are listed as Table 5.2 and Table 5.3.  

Table 5.2  n~  values for Real Data 

Real Data 

Sample 

size 

Independent vs. 

Compound symmetric 

Compound 

symmetric vs. 

Toeplitz Toeplitz vs. Untructured 

200 4.718622 17.20437 107.8815 

Table 5.3  Best model selection for Real Data 

Real Data 

Sample 

size 
Independent 

Compound 

symmetric 
Toeplitz Unstructured 

200 
(0, 4.718622) (4.718622, 17.20437) (17.2043, 107.881) (107.8815, 200) 

 

From our result table, we may find that for very small sample size n less than 4.7, 

we shall select independent correlation model; for sample size from 4.7 to 17, we could 

use the Compound symmetric correlation model; for sample size from 17 to 108, 

Toeplitz correlation model will be our choice; for the sample size greater than 108, our 

best model will be the unstructured model. We also plot a graph for the four 

loglikelihood values via the patameter numbers as Figure 5.1. 
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Figure 5.1 The model lack of fit curve for Real Data 

From the figure, we can find that our choice will be the Toeplitz correlation 

model for a specific sample size. For a greater sample size, we still need to use the more 

complex model such as unstructured correlation model. 
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Chapter Six: Conclusion and Further research 

 

In summary, our methodology is using GEE method to estimate the longitudinal 

data and find the exact intervals by n~  value in Generalized AIC Index for our model 

selection. This study has found the best model selection for different correlation 

structures in a longitudinal data. In our simulation result, we have successfully found 

the specific intervals for model selection in both 2 by 2 and 4 by 4 working correlation 

models; furthermore, we also apply our algorithm to the real data. The result for the real 

data is also very consistent as our simulation study. We find the exact n~  value in each 

correlation structure and also the best model selection interval. However, we are under 

the assumption of discrete repeated measurements. The working correlation structure 

W(t) depends on time point t that is discrete. There are still some time point of 

measurement t is continuous in our real life. Nonetheless, we need advanced method 

and techniques to solve those kinds of problems.  
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Appendix A: Splus Code(Compound symmetric simulation model with sample 

size=1000) 

m=matrix(c(1,0.01,0.01,1),nrow=2,ncol=2) 

x=y=e=numeric() 

 

for (i in 1:2000) 

{ 

xi=rnorm(2,100,20) 

a=rnorm(2) 

ei=a%*%m 

yi=0.1098*xi+ei 

x=c(x,xi) 

y=c(y,yi) 

e=c(e,ei) 

} 

 

oid=1:2000 

ns=1000 

id=sample(oid,ns) 

 

Xm=matrix(c(x[2*id-1], x[2*id]),ns,2) 

Ym=matrix(c(y[2*id-1],y[2*id]),ns,2) 

m1=m2=matrix(c(1,0,0,1), nrow=2,ncol=2) 

 

######################################### 

# Compound symmetric 

 

B=0 

old.B=1 

var=1 

rho=0 

maxit=0 

 

while(abs(old.B-B)>1E-6 & maxit <100) 

{  

maxit=maxit+1 

old.B=B 

 

V=solve(m1) 

 

sum1=0 

sum2=0 

for (i in 1:ns) 

{ 

sum1=sum1+Xm[i,]%*%V%*%Ym[i,] 

sum2=sum2+Xm[i,]%*%V%*%Xm[i,] 

} 

sum3=solve(sum2) 

Betahat=sum1%*%sum3 

B=Betahat[1,1] 

 

Rm=(Ym-(Xm*B)) 

var = sum(Rm^2)/(2*ns-1) 

 

Rm=Rm/sqrt(var) 

rho=0 

for(i in 1:ns) 

{ 
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 rho = rho+Rm[i,1]*Rm[i,2]/(ns-1)  

} 

 

 

m1=matrix(var*c(1,rho,rho,1), nrow=2, ncol=2) 

 

print(c(B,maxit,var, rho)) 

 

} 

V1=solve(m1) 

 

ALL=0 

g=2 

for (i in 1:ns) 

{ 

ELL=ELL+sum(-(2*pi)^(g/2)-det(m)^(1/2)-t(Rm[i,])%*%V1%*%Rm[i,]) 

 

}  

 

######################################### 

# Independence 

 

B=0 

old.B=1 

var=1 

rho=0 

maxit=0 

 

while(abs(old.B-B)>1E-6 & maxit <100) 

{  

maxit=maxit+1 

old.B=B 

 

V=solve(m2) 

 

sum1=0 

sum2=0 

for (i in 1:ns) 

{ 

sum1=sum1+Xm[i,]%*%V%*%Ym[i,] 

sum2=sum2+Xm[i,]%*%V%*%Xm[i,] 

} 

sum3=solve(sum2) 

Betahat=sum1%*%sum3 

B=Betahat[1,1] 

 

Rm=(Ym-(Xm*B)) 

var = sum(Rm^2)/(2*ns-1) 

m2=matrix(var*c(1,0,0,1), nrow=2, ncol=2) 

print(c(B,maxit,var, rho)) 

 

} 

 

V2=solve(m2) 

 

LL=0 

g=2 

for (i in 1:ns) 

{ 

LL=LL+sum(-(2*pi)^(g/2)-det(m2)^(1/2)-t(Rm[i,])%*%V2%*%Rm[i,]) 

}  
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LL 

 

 

k=2 

k1=3 

 

nt=ns*(k-k1)/(2*(LL-ELL)+(k1-k)) 

nt 
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Appendix B: Splus Code(Unstructured simulation model with sample size=1000) 

m=matrix(c(1,0.4,0.27,0.6,0.4,1,0.75,0.01,0.27,0.75,1,0.3,0.6,0.01,0.3,1),4,4)     

 

 

x=matrix(0,4*2000,2) 

y=rep(0,4*2000) 

e=rep(0,4*2000) 

 

 

 

for (i in 1:2000) 

{ 

xi=rnorm(4,100,20) 

ei=rmvnorm(1, mean=rep(0,4), cov=m, d=4) 

yi=1+0.1098*xi+ei 

x[(4*i-3):(4*i),1:2]=c(1,1,1,1,xi) 

y[(4*i-3):(4*i)]=yi 

e[(4*i-3):(4*i)]=ei 

} 

 

 

oid=1:2000 

ns=500 

id=sample(oid,ns,replace=F) 

Xm=matrix(0,4*ns,2) 

Ym=rep(0,4*ns) 

for(k in 1:ns) 

{ 

 Xm[(4*k-3):(4*k),1:2]=c(x[(4*id[k]-3):(4*id[k]),1:2]) 

 Ym[(4*k-3):(4*k)]=y[(4*id[k]-3):(4*id[k])] 

} 

 

 

 

######################################### 

# Independence 

 

m1=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1), 4,4) 

B=c(0,0) 

old.B=c(1,1) 

var=1 

rho=0 

maxit=0 

 

while(max(abs(old.B-B))>1E-6 & maxit <100) 

{  

maxit=maxit+1 

old.B=B 

 

V=solve(m1) 

 

 

sum1=rep(0,2) 

sum2=matrix(0,2,2) 

for (i in 1:ns) 

{ 

 xi=Xm[(4*(i-1)+1):(4*i),1:2] 

 yi=Ym[(4*i-3):(4*i)] 

 sum1=sum1+t(xi)%*%V%*%yi 
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 sum2=sum2+t(xi)%*%V%*%xi 

} 

B=solve(sum2)%*%sum1 

 

 

Rm=(Ym-(Xm%*%B)) 

var = sum(Rm^2)/(4*ns-2) 

 

m1=matrix(var*c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1), 4,4) 

 

print(c(maxit,B,var)) 

 

} 

R=matrix(Rm,nrow=ns,ncol=4,byrow=T) 

V1=solve(m1) 

LL=0 

g=4 

for (i in 1:ns) 

{ 

 LL=LL+sum(-log((2*pi))*g/2-log(det(m1))/2-t(R[i,])%*%V1%*%R[i,]/2) 

 } 

########################################################## 

 

# Exchangable 

 

m2=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),4,4) 

B=c(0,0) 

old.B=c(1,1) 

var=1 

rho=0 

maxit=0 

 

while(max(abs(old.B-B))>1E-6 & maxit <100) 

{  

maxit=maxit+1 

old.B=B 

 

V=solve(m2) 

 

 

sum1=rep(0,2) 

sum2=matrix(0,2,2) 

for (i in 1:ns) 

{ 

 xi=Xm[(4*(i-1)+1):(4*i),1:2] 

 yi=Ym[(4*(i-1)+1):(4*i)] 

 sum1=sum1+t(xi)%*%V%*%yi 

 sum2=sum2+t(xi)%*%V%*%xi 

} 

B=solve(sum2)%*%sum1 

 

Rm=(Ym-(Xm%*%B)) 

var = sum(Rm^2)/(4*ns-2) 

 

 

rho=0 

for(i in 1:ns) 

{ 

 rho = rho+Rm[4*i-3]*Rm[4*i-2]+Rm[4*i-3]*Rm[4*i-1]+Rm[4*i-3]*Rm[4*i] 

       +Rm[4*i-2]*Rm[4*i-1]+Rm[4*i-2]*Rm[4*i]+Rm[4*i-1]*Rm[4*i] 

} 
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rho=rho/var/(6*ns-2) 

 

 

m2=matrix(var*c(1,rho,rho,rho,rho,1,rho,rho,rho,rho,1,rho,rho,rho,rho,1), 4,4) 

 

print(c(maxit,B,var, rho)) 

 

} 

 

R=matrix(Rm,nrow=ns,ncol=4,byrow=T) 

 

V2=solve(m2) 

ELL=0 

g=4 

for (i in 1:ns) 

{ 

 ELL=ELL+sum(-log((2*pi))*g/2-log(det(m2))/2-t(R[i,])%*%V2%*%R[i,]/2) 

} 

 

######################################### 

# CS 

 

m3=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),4,4) 

B=c(0,0) 

old.B=c(1,1) 

var=1 

rho1=0 

rho2=0 

rho3=0 

maxit=0 

 

while(max(abs(old.B-B))>1E-6 & maxit <100) 

{  

maxit=maxit+1 

old.B=B 

 

V=solve(m3) 

 

 

sum1=rep(0,2) 

sum2=matrix(0,2,2) 

for (i in 1:ns) 

{ 

 xi=Xm[(4*i-3):(4*i),1:2] 

 yi=Ym[(4*i-3):(4*i)] 

 sum1=sum1+t(xi)%*%V%*%yi 

 sum2=sum2+t(xi)%*%V%*%xi 

} 

B=solve(sum2)%*%sum1 

 

Rm=(Ym-(Xm%*%B)) 

var = sum(Rm^2)/(4*ns-2) 

 

 

rho1=0 

rho2=0 

rho3=0 

for(i in 1:ns) 

{ 

 rho1 = rho1+Rm[4*i-3]*Rm[4*i-2]+Rm[4*i-2]*Rm[4*i-1]+Rm[4*i-1]*Rm[4*i] 

 rho2 = rho2+Rm[4*i-3]*Rm[4*i-1]+Rm[4*i-2]*Rm[4*i] 
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 rho3 = rho3+Rm[4*i-3]*Rm[4*i] 

} 

rho1=rho1/var/(3*ns-2) 

rho2=rho2/var/(2*ns-2) 

rho3=rho3/var/(ns-2) 

 

m3=matrix(var*c(1,rho1,rho2,rho3,rho1,1,rho1,rho2,rho2,rho1,1,rho1,rho3,rho2,r

ho1,1), 4,4) 

 

print(c(maxit,B,var, rho1,rho2,rho3)) 

 

} 

 

R=matrix(Rm,nrow=ns,ncol=4,byrow=T) 

 

V3=solve(m3) 

CLL=0 

g=4 

for (i in 1:ns) 

{ 

 CLL=CLL+sum(-log((2*pi))*g/2-log(det(m3))/2-t(R[i,])%*%V3%*%R[i,]/2) 

 } 

 

######################################### 

# Unstructed 

 

 

m4=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),4,4) 

B=c(0,0) 

old.B=c(1,1) 

var=1 

rhovec=rep(0,6) 

maxit=0 

 

while(max(abs(old.B-B))>1E-6 & maxit <100) 

{  

maxit=maxit+1 

old.B=B 

 

V4=solve(m4) 

 

 

sum1=rep(0,2) 

sum2=matrix(0,2,2) 

for (i in 1:ns) 

{ 

 xi=Xm[(4*i-3):(4*i),1:2] 

 yi=Ym[(4*i-3):(4*i)] 

 sum1=sum1+t(xi)%*%V%*%yi 

 sum2=sum2+t(xi)%*%V%*%xi 

} 

B=solve(sum2)%*%sum1 

 

Rm=(Ym-(Xm%*%B)) 

var = sum(Rm^2)/(4*ns-2) 

 

rhovec=rep(0,6) 

for(i in 1:ns) 

{ 

 rhovec[1] = rhovec[1]+Rm[4*i-3]*Rm[4*i-2] 

 rhovec[2] = rhovec[2]+Rm[4*i-3]*Rm[4*i-1] 
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 rhovec[3] = rhovec[3]+Rm[4*i-3]*Rm[4*i] 

 rhovec[4] = rhovec[4]+Rm[4*i-2]*Rm[4*i-1] 

 rhovec[5] = rhovec[5]+Rm[4*i-2]*Rm[4*i] 

 rhovec[6] = rhovec[6]+Rm[4*i-1]*Rm[4*i] 

} 

rhovec=rhovec/var/(ns-2) 

 

m4=matrix(var*c(1,rhovec[1],rhovec[2],rhovec[3],rhovec[1],1,rhovec[4],rhovec[5

], 

           rhovec[2],rhovec[4],1,rhovec[6],rhovec[3],rhovec[5],rhovec[6],1), 

4,4) 

 

print(c(maxit,B,var,rhovec)) 

 

} 

 

R=matrix(Rm,nrow=ns,ncol=4,byrow=T) 

 

V4=solve(m4) 

ULL=0 

g=4 

for (i in 1:ns) 

{ 

 ULL=ULL+sum(-log((2*pi))*g/2-log(det(m4))/2-t(R[i,])%*%V4%*%R[i,]/2) 

 } 

 

 

##############################################################################

############### 

#N* 

 

k=3 

k1=4 

k2=6 

k3=9 

 

nt=(k1-k)*ns/(2*(ELL-LL)+(k-k1)) 

nt1=(k2-k1)*ns/(2*(CLL-ELL)+(k1-k2)) 

nt2=(k3-k2)*ns/(2*(ULL-CLL)+(k2-k3)) 

 

LL 

ELL 

CLL 

ULL 

nt 

nt1 

nt2 

 

Q=c(k,k1,k2,k3) 

W=c(LL,ELL,CLL,ULL) 

 

plot(Q,W) 

lines(Q,W) 
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Appendix C: Splus Code (Real data) 
# Real Data 

 

sample(1:20,6) 

k=1+8 

repn=6 

ns=200 

indm=matrix(c(1,    0,    0,    0,    0,    0, 

              0,    1,    0,    0,    0,    0, 

              0,    0,    1,    0,    0,    0, 

              0,    0,    0,    1,    0,    0, 

              0,    0,    0,    0,    1,    0, 

              0,    0,    0,    0,    0,    1), 6, 6) 

 

rhovec=rep(0,15) 

corrm=matrix(c(1,      rhovec[1], rhovec[2], rhovec[3], rhovec[4], rhovec[5], 

            rhovec[1],        1, rhovec[6], rhovec[7], rhovec[8], rhovec[9], 

            rhovec[2],rhovec[6],         1,rhovec[10],rhovec[11],rhovec[12], 

            rhovec[3],rhovec[7],rhovec[10],         1,rhovec[13],rhovec[14], 

            rhovec[4],rhovec[8],rhovec[11],rhovec[13],         1,rhovec[15], 

            rhovec[5],rhovec[9],rhovec[12],rhovec[14],rhovec[15],         1), 

6,6) 

 

print(Real.data2) 

Xm=matrix(0,repn*ns,k) 

Ym=rep(0,repn*ns) 

 

x1=rep(1,repn*ns) 

x2=rep(0,repn*ns) 

x3=rep(0,repn*ns) 

x4=rep(0,repn*ns) 

x5=rep(0,repn*ns) 

x6=rep(0,repn*ns) 

x7=rep(0,repn*ns) 

x8=rep(0,repn*ns) 

x9=rep(0,repn*ns) 

y=rep(0,repn*ns) 

 

 

for (i in 1:1200) 

{ 

x2[i]=c(Real.data2[i,3]) 

x3[i]=c(Real.data2[i,4]) 

x4[i]=c(Real.data2[i,5]) 

x5[i]=c(Real.data2[i,6]) 

x6[i]=c(Real.data2[i,7]) 

x7[i]=c(Real.data2[i,8]) 

x8[i]=c(Real.data2[i,9]) 

x9[i]=c(Real.data2[i,10]) 

y[i]=c(Real.data2[i,2]) 

} 

X=c(x1,x2,x3,x4,x5,x6,x7,x8,x9) 

Xm=matrix(c(X),repn*ns,k) 

Ym=matrix(c(y),repn*ns,1) 

 

 

 

######################################### 

# Independence 
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m1=indm 

 

B=rep(0,k) 

old.B=rep(1,k) 

var=1 

rho=0 

maxit=0 

 

while(max(abs(old.B-B))>1E-6 & maxit <100) 

{  

 

maxit=maxit+1 

old.B=B 

 

V=solve(m1) 

 

 

sum1=rep(0,k) 

sum2=matrix(0,k,k) 

 

for (i in 1:ns) 

{ 

 xi=Xm[(repn*(i-1)+1):(repn*i),1:k] 

 yi=Ym[(repn*(i-1)+1):(repn*i)] 

# sum1=as.numeric(sum1) 

 sum1=sum1+t(xi)%*%V%*%yi 

 sum2=sum2+t(xi)%*%V%*%xi 

 print(c(i,sum1)) 

} 

 

B=solve(sum2)%*%sum1 

 

 

Rm=(Ym-(Xm%*%B)) 

 

var = sum(Rm^2)/(repn*ns-k) 

  

 

m1=matrix(var*indm, repn,repn) 

 

print(c(maxit,B,var)) 

 

} 

 

R=matrix(Rm,nrow=ns,ncol=repn,byrow=T) 

V1=solve(m1) 

LL=0 

g=repn 

for (i in 1:ns) 

{ 

 LL=LL+sum(-log((2*pi))*g/2-log(det(m1))/2-t(R[i,])%*%V1%*%R[i,]/2) 

} 

########################################################## 

 

# Exchangable 

 

m2=indm 

B=rep(0,k) 

old.B=rep(1,k) 

var=1 

rho=0 
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maxit=0 

 

while(max(abs(old.B-B))>1E-6 & maxit <100) 

{  

maxit=maxit+1 

old.B=B 

 

V=solve(m2) 

 

 

 

sum1=rep(0,k) 

sum2=matrix(0,k,k) 

for (i in 1:ns) 

{ 

 xi=Xm[(repn*(i-1)+1):(repn*i),1:k] 

 yi=Ym[(repn*(i-1)+1):(repn*i)] 

 sum1=sum1+t(xi)%*%V%*%yi 

 sum2=sum2+t(xi)%*%V%*%xi 

} 

 

B=solve(sum2)%*%sum1 

 

Rm=(Ym-(Xm%*%B)) 

var = sum(Rm^2)/(repn*ns-k) 

 

rho=0 

for(i in 1:ns) 

{ 

 rho = rho+Rm[6*i-5]*Rm[6*i-4]+Rm[6*i-5]*Rm[6*i-3]+Rm[6*i-5]*Rm[6*i-2] 

          +Rm[6*i-5]*Rm[6*i-1]+Rm[6*i-5]*Rm[6*i]+Rm[6*i-4]*Rm[6*i-3] 

          +Rm[6*i-4]*Rm[6*i-2]+Rm[6*i-4]*Rm[6*i-1]+Rm[6*i-4]*Rm[6*i] 

          +Rm[6*i-3]*Rm[6*i-2]+Rm[6*i-3]*Rm[6*i-1]+Rm[6*i-3]*Rm[6*i] 

             +Rm[6*i-2]*Rm[6*i-1]+Rm[6*i-2]*Rm[6*i]+Rm[6*i-1]*Rm[6*i] 

} 

rho=rho/var/(15*ns-k) 

 

 

corrm=matrix(c(1, rho, rho, rho, rho, rho, 

             rho,   1, rho, rho, rho, rho, 

             rho, rho,   1, rho, rho, rho, 

             rho, rho, rho,   1, rho, rho, 

             rho, rho, rho, rho,   1, rho, 

             rho, rho, rho, rho, rho,   1), 6,6) 

 

 

m2=matrix(var*corrm, repn,repn) 

 

print(c(maxit,B,var,rho)) 

 

} 

 

R=matrix(Rm,nrow=ns,ncol=repn,byrow=T) 

 

V2=solve(m2) 

ELL=0 

g=repn 

for (i in 1:ns) 

{ 

 ELL=ELL+sum(-log(2*pi)*g/2-log(det(m2))/2-t(R[i,])%*%V2%*%R[i,]/2)} 
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######################################### 

# CS 

 

m3=indm 

 

B=rep(0,k) 

old.B=rep(1,k) 

var=1 

rho1=0 

rho2=0 

rho3=0 

rho4=0 

rho5=0 

maxit=0 

 

while(max(abs(old.B-B))>1E-6 & maxit <100) 

{  

maxit=maxit+1 

old.B=B 

 

V=solve(m3) 

 

 

sum1=rep(0,k) 

sum2=matrix(0,k,k) 

for (i in 1:ns) 

{ 

 xi=Xm[(repn*(i-1)+1):(repn*i),1:k] 

 yi=Ym[(repn*(i-1)+1):(repn*i)] 

 sum1=sum1+t(xi)%*%V%*%yi 

 sum2=sum2+t(xi)%*%V%*%xi 

} 

 

B=solve(sum2)%*%sum1 

 

Rm=(Ym-(Xm%*%B)) 

var = sum(Rm^2)/(repn*ns-k) 

 

 

rho1=0 

rho2=0 

rho3=0 

rho4=0 

rho5=0 

 

for(i in 1:ns) 

{ 

 rho1 = rho1+Rm[6*i-5]*Rm[6*i-4]+Rm[6*i-4]*Rm[6*i-3]+Rm[6*i-3]*Rm[6*i-2] 

              +Rm[6*i-2]*Rm[6*i-1]+Rm[6*i-1]*Rm[6*i] 

 rho2 = rho2+Rm[6*i-5]*Rm[6*i-3]+Rm[6*i-4]*Rm[6*i-2]+Rm[6*i-3]*Rm[6*i-

1]+Rm[6*i-2]*Rm[6*i] 

 rho3 = rho3+Rm[6*i-5]*Rm[6*i-2]+Rm[6*i-4]*Rm[6*i-1]+Rm[6*i-3]*Rm[6*i] 

 rho4 = rho4++Rm[6*i-5]*Rm[6*i-1]+Rm[6*i-4]*Rm[6*i] 

 rho5 = rho5++Rm[6*i-5]*Rm[6*i] 

} 

rho1=rho1/var/(5*ns-k) 

rho2=rho2/var/(4*ns-k) 

rho3=rho3/var/(3*ns-k) 

rho4=rho4/var/(2*ns-k) 

rho5=rho5/var/(ns-k) 
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corrm=matrix(c(1, rho1, rho2, rho3, rho4, rho5, 

             rho1,   1, rho1, rho2, rho3, rho4, 

             rho2, rho1,   1, rho1, rho2, rho3, 

             rho3, rho2, rho1,   1, rho1, rho2, 

             rho4, rho3, rho2, rho1,   1, rho1, 

             rho5, rho4, rho3, rho2, rho1,   1), 6,6) 

 

 

m3=matrix(var*corrm, repn,repn) 

 

print(c(maxit,B,var,rho1,rho2,rho3,rho4,rho5)) 

 

} 

 

R=matrix(Rm,nrow=ns,ncol=repn,byrow=T) 

 

V3=solve(m3) 

CLL=0 

g=repn 

for (i in 1:ns) 

{ 

 CLL=CLL+sum(-log(2*pi)*g/2-log(det(m3))/2-t(R[i,])%*%V3%*%R[i,]/2) 

} 

 

######################################### 

# Unstructed 

 

 

m4=indm 

 

B=rep(0,k) 

old.B=rep(1,k) 

var=1 

rhovec=rep(0,15) 

 

maxit=0 

 

while(max(abs(old.B-B))>1E-6 & maxit <100) 

{  

maxit=maxit+1 

old.B=B 

 

V4=solve(m4) 

 

sum1=rep(0,k) 

sum2=matrix(0,k,k) 

for (i in 1:ns) 

{ 

 xi=Xm[(repn*(i-1)+1):(repn*i),1:k] 

 yi=Ym[(repn*(i-1)+1):(repn*i)] 

 sum1=sum1+t(xi)%*%V%*%yi 

 sum2=sum2+t(xi)%*%V%*%xi 

} 

 

B=solve(sum2)%*%sum1 

 

Rm=(Ym-(Xm%*%B)) 

var = sum(Rm^2)/(repn*ns-k) 

 

rhovec=rep(0,15) 

for(i in 1:ns) 
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{ 

 rhovec[1] = rhovec[1]+Rm[6*i-5]*Rm[6*i-4] 

 rhovec[2] = rhovec[2]+Rm[6*i-5]*Rm[6*i-3] 

 rhovec[3] = rhovec[3]+Rm[6*i-5]*Rm[6*i-2] 

 rhovec[4] = rhovec[4]+Rm[6*i-5]*Rm[6*i-1] 

 rhovec[5] = rhovec[5]+Rm[6*i-5]*Rm[6*i] 

 rhovec[6] = rhovec[6]+Rm[6*i-4]*Rm[6*i-3] 

 rhovec[7] = rhovec[7]+Rm[6*i-4]*Rm[6*i-2] 

 rhovec[8] = rhovec[8]+Rm[6*i-4]*Rm[6*i-1] 

 rhovec[9] = rhovec[9]+Rm[6*i-4]*Rm[6*i] 

 rhovec[10] = rhovec[10]+Rm[6*i-3]*Rm[6*i-2] 

 rhovec[11] = rhovec[11]+Rm[6*i-3]*Rm[6*i-1] 

 rhovec[12] = rhovec[12]+Rm[6*i-3]*Rm[6*i] 

 rhovec[13] = rhovec[13]+Rm[6*i-2]*Rm[6*i-1] 

 rhovec[14] = rhovec[14]+Rm[6*i-2]*Rm[6*i] 

 rhovec[15] = rhovec[15]+Rm[6*i-1]*Rm[6*i] 

} 

 

rhovec=rhovec/var/(ns-k) 

 

corrm=matrix(c(      1,rhovec[1], rhovec[2], rhovec[3], rhovec[4], rhovec[5], 

             rhovec[1],        1, rhovec[6], rhovec[7], rhovec[8], rhovec[9], 

             rhovec[2],rhovec[6],         1,rhovec[10],rhovec[11],rhovec[12], 

             rhovec[3],rhovec[7],rhovec[10],         1,rhovec[13],rhovec[14], 

             rhovec[4],rhovec[8],rhovec[11],rhovec[13],         1,rhovec[15], 

             rhovec[5],rhovec[9],rhovec[12],rhovec[14],rhovec[15],         1), 

6,6) 

 

 

m4=matrix(var*corrm, repn,repn) 

 

print(c(maxit,B,var,rhovec)) 

 

} 

 

R=matrix(Rm,nrow=ns,ncol=repn,byrow=T) 

 

V4=solve(m4) 

ULL=0 

g=repn 

for (i in 1:ns) 

{ 

 ULL=ULL+sum(-log(2*pi)*g/2-log(det(m4))/2-t(R[i,])%*%V4%*%R[i,]/2) 

} 

 

print(c(LL,ELL,CLL,ULL)) 

 

##############################################################################

############### 

#N* 

 

k=6 

k1=7 

k2=11 

k3=21 

 

nt=ns*(k-k1)/(2*(LL-ELL)+(k1-k)) 

nt1=ns*(k1-k2)/(2*(ELL-CLL)+(k2-k1)) 

nt2=ns*(k2-k3)/(2*(CLL-ULL)+(k3-k2)) 

 

nt 
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nt1 

nt2 

 

Q=c(k,k1,k2,k3) 

W=c(LL,ELL,CLL,ULL) 

 

plot(Q,W) 

lines(Q,W) 
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