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ABSTRACT

ESSAYS ON UNCERTAINTY IN PUBLIC ECONOMICS AND BARGAINING

BY

OMER FARUK BARIS
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Committee Chair: Dr. Yongsheng Xu

Major Department: Economics

This dissertation consists of two parts. The theme connecting the two parts is

the role of uncertainty. The first part focuses on the role of uncertainty in

cooperative bargaining and public decision making. I provide an axiomatic

characterization of the normalized utilitarian solution to bargaining problems

involving uncertainty. In addition to three basic axioms that are common in the

bargaining literature, I propose the axiom of weak linearity to characterize the

solution.

In the second part I study uncertainty in non-cooperative games by designing a

principal agent model of public bailouts. The first essay in this part sets up the

model and shows that the moral hazard problem, namely the Samaritan’s dilemma,

exists without an altruistic principal. The second essay in this part builds upon the

previous essay and focuses on the informational elements in a bailout game. Mainly,

I show the existence of a separating equilibrium, where public bailouts serve as a

mechanism to reveal essential information to outsiders and in which the good-type

agents can benefit from rejecting a bailout offer.

xi



Chapter I

INTRODUCTION

This dissertation consists of two parts. In a very broad sense, the theme connecting

both parts is the role of uncertainty in economic decisions.

The first essay (Chapter II) concerns the role of uncertainty in cooperative

bargaining. In this essay, I provide an axiomatic characterization of the normalized

utilitarian solution for convex bargaining problems. Normalized utilitarian solution

maximizes the sum of proportional gains as compared to ideal payoffs. The

literature often refers to the normalized utilitarian solution as the relative utilitarian

solution, since gains are evaluated in proportion to the maximal (ideal) payoffs.

I use four axioms for the characterization of the normalized utilitarian solution:

Pareto Optimality, Anonymity, Invariance to Equivalent Utility Representations and

Weak Linearity. The first three of these axioms are widely used in the bargaining

literature. The fourth axiom, Weak Linearity is introduced in this essay as a weaker

variant of the linearity property, often referred to as the “no timing effect condition”.

Weak Linearity requires that the timing of the agreement be ignored over a

lottery of convex bargaining problems when these problems have the same ideal

point. Unlike the Linearity axiom, the Weak Linearity axiom is compatible with the

property of invariance to equivalent utility representations. The solution, which

satisfies the no timing effect condition, then is ex ante efficient.

1
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The second part of this dissertation studies the role of uncertainty in public

decision making regarding bailouts in two essays. In particular, the moral hazard

problem and the case of signaling in public bailouts are examined.

In the first essay in this part (Chapter III), I analyze public bailouts by taking a

non-cooperative game-theoretic approach and constructing a principal-agent model.

I translate the original the Samaritan’s Dilemma to the case of a non-altruistic

government bailing out private companies. The case is popularly termed as too big

to fail). The main result in this chapter is that the moral hazard problem is

unavoidable in public bailouts when we relax the assumptions of complete

information and an altruistic principal. When the public bailout process is examined

as a sequential game with uncertainties, the information gap between agents and

the policymaker leads to the moral hazard problem in which an agent exerts less

effort once insulated from the risk of failure through a bailout mechanism.

In the following essay (Chapter IV), I address the informational aspects of

bailout policies as a continuation of Chapter III. In particular, I show that there

exists a separating equilibrium in the bailout game when the game design allows

good agents to reveal their true types by rejecting the bailout offer. The main result

in this essay is the case that, under certain conditions, the bailout mechanism gives

rise to an equilibrium in which the good-type agents separate themselves from the

bad-types by rejecting the bailout offer. This type of efficiency-enhancing signaling

mechanism mitigates and reverses the moral hazard problem in public bailouts. As

a result, the bailout game serves as a signaling mechanism under which efficiency

gains are possible.



Chapter II

TIMING EFFECT IN BARGAINING AND THE NORMALIZED

UTILITARIAN SOLUTION

II.1 Introduction

The axiomatic bargaining literature concerns the implications of several axioms that

describe the desirable properties of a cooperative outcome. The original framework

pioneered by Nash (1950) considers bargaining situations under perfect and

complete information in which individuals are expected utility maximizers as

described by von Neumann-Morgenstern. In search of a cooperative solution, the

main question is clearly related to the issue of fairness. This framework of

cooperative bargaining can be applied to several real life situations: division of

bequests, gifts, household chores, divorce settlements, wage bargaining, arbitration

mechanisms, etc.

This paper addresses the role of uncertainty in bargaining problems.1 The issue

of uncertainty has been studied from several dimensions in the literature. In

general, the players’ risk perception and sensitivity plays a crucial role in bargaining

situations, as individual preferences are assumed to be represented by von-Neumann

Morgenstern utilities.

A common approach is to analyze the behavior of bargaining solutions when the

risk preferences of players are changed. For example, a relatively risk averse player

1Here, uncertainty and risk are used as synonymously and interchangeably.

3
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is replaced with a player who is less risk averse. Among others, Kihlstrom et al.

(1980) analyzes the effect of risk aversion on several solution concepts, Riddell

(1981) studies bargaining problems under uncertain states of nature, and Bossert

et al. (1996) examines efficiency under uncertainty and characterizes monotone path

solutions using non-probabilistic decision rules.

With a special emphasis on the timing of the agreement, Myerson (1981)

considers two important properties: linearity and concavity. Linearity is referred to

as the “no timing effect” condition, implying that the bargainers cannot

strategically delay or expedite the bargaining process. Concavity favors earlier (ex

ante) agreements against delayed (ex post) agreements. Another similar axiom is

additivity which concerns simultaneity of different bargaining problems, introduced

by Perles and Maschler (1981) (see also Peters 1986).

In this paper I follow Myerson (1981) and provide a characterization of the

normalized utilitarian solution using a weaker version of linearity property

(described in the next section). The normalized utilitarian solution is obtained by

maximizing the sum of bargainers’ proportional payoffs with respect to the ideal

point. The ideal point (also referred to as the utopia point (Yu 1973)) is the vector

of maximum feasible (and individually rational) payoffs for each bargainer in a

bargaining problem. In this respect, the normalized utilitarian solution uses the

same information as the Kalai and Smorodinsky (1975) solution.

In order to motivate the issue of uncertainty in bargaining and the normalized

utilitarian solution, first consider the implications of different bargaining solutions

to a hypothetical scenario described below:

Example 1. Consider the case of two individuals having lost their way in the

Sahara Desert. They are at different locations looking for a water supply and there

is a fixed supply of water at a different location, which is unknown to both. The

amount of water is fixed at 10 gallons. Further, suppose that Traveler A has a
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container with a capacity of 9 gallons, and Traveler B has a smaller container with a

capacity of only 3 gallons. If Traveler A discovers the water supply first she gets 9

gallons of water from the source; then only one gallon of water will be left for

Traveler B. Conversely, if Traveler B discovers the water supply first, she gets 3

gallons of water, and 7 gallons of water will be left for Traveler A. A bargaining

situation will arise if they simultaneously discover the water supply. Then how are

the travelers going to allocate the water?

The bargaining problem in Example 1 is illustrated in Figure 1.

Traveler A

Traveler B

3

9

slope=1

7

Figure 1: Travelers’ bargaining problem.

Let us consider some common solutions that are offered in the bargaining

literature. These solutions are summarized in Table 1.

A classic egalitarian gives 3 gallons of water to each traveler. Traveler A is not

allowed to get more water under this solution because it would violate the principle

of equal distribution. It is clearly a fair outcome, but it is inefficient to waste (or to

leave) 4 gallons of valuable water in the desert. The problem of inefficiency in

egalitarianism is an issue of concern for most economists. Nevertheless, there is a

room for improvement.
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Relaxing the rigid classic egalitarian solution, a maximin (Rawlsian) egalitarian

would instead ensure that Traveler A and Traveler B each get at least 3 gallons of

water. The Rawlsian solution allow Traveler A to get more water, but that is not an

improvement as long as Traveler B stays with 3 gallons of water.

On the other hand, a utilitarian proposes a series of solutions in which all of the

water is used, securing efficiency. The utilitarian, however, is indifferent regarding

the distribution of water. Therefore, the continuum of (10− x, x) with 1 ≤ x ≤ 3

are all possible utilitarian solutions. Accordingly, the utilitarian is indifferent

between a situation of Traveler A getting 7 gallons of water and Traveler B getting

3 gallons and a situation of Traveler A getting 9 gallons and Traveler B getting only

1 gallon. In Rawlsian and utilitarian solutions the outcome is multi-valued.

Unused capacity
Solution Outcome (proportional)

Egalitarian (3, 3) (2/3, 0)
Rawlsian (3 + x, 3), 0 ≤ x ≤ 4 (6− x/9, 0)
Utilitarian (10− x, x), 1 ≤ x ≤ 3 (x− 1/9, 3− x/3)
Nash (7, 3) (2/9, 0)
Kalai-Smordinsky (15/2, 15/2) (1/6, 1/6)
Normalized utilitarian (7, 3) (2/9, 0)

Table 1: Solutions to travelers’ bargaining problem in Example 1.

The two most common single-valued solutions in the bargaining literature are

the Nash (1950) and the Kalai and Smorodinsky (1975) solutions. The Nash

solution resolves the conflict between the egalitarian and the utilitarian by utilizing

an alternative approach. Accordingly, the product of individual quantities is

maximized, splitting the watter supply as (7, 3). Note that this solution is

consistent with both the Rawlsian and utilitarian solutions.

Another alternative apprach is provided by Kalai and Smorodinsky (1975),

which utilizes the proportionality principle. Accordingly, the proportional gains (or

losses) are equalized. The Kalai-Smorodinsky solution dissents from the Nash
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solution because at (7, 3) Traveler B’s container is full but Traveler A’s container is

only 7/9 full. Making the proportions equal, a split of (15/2, 5/2) is the outcome

according to the Kalai-Smorodinsky solution, so that each traveler fills up 5/6 of

their containers and there is no waste of water. I need to note that this solution is

efficient in a weaker sense for bargaining problems with more than two individuals.

As it utilizes the equality of proportions as a principle, the Kalai-Smorodinsky

solution is also referred to as the relative egalitarian solution in the literature.

The utilitarian counterpart to the Kalai-Smorodinsky solution is developed as

the normalized utilitarian solution. This solution maximizes the sum of proportional

gains (or equivalently minimizes the sum of proportional losses). Accordingly, the

normalized utilitarian solution is (7, 3), which in this case coincides with the Nash

solution. Although (7, 3) is the common solution of the Rwalsian, utilitarian and

Nash solutions, further complications to the problem in Example 1 point out the

disagreement between these solutions.

Example 2 (Travelers’ bargaining, revisited). Suppose now that Traveler B’s

3-gallon container is replaced with a 2-gallon leaky container and a 1-gallon bottle.

Unfortunately for Traveler B, when the 2-gallon leaky container is filled, water is

spilled and therefore wasted. Hence, Traveler B suffers from low productivity. Note

that the total capacity for Traveler B remains unchanged. Suppose for every one

gallon that is put in Traveler B’s 2-gallon container, exactly one gallon of water is

wasted. In light of the new information, the question is whether the allocation of

water should change.

The new bargaining problem in Example 2 is illustrated in Figure 2 and the

solutions are summarized in Table 2.

Let us consider the changes in the solutions I discussed above. The Egalitarian

solution remains unchanged, ensuring that each traveler gets exactly 3 gallons of

water. To give 3 gallons of water to Traveler B, 2 gallons of water will be wasted
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Traveler A

Traveler B

3

9

slope=1

5

Figure 2: Travelers’ bargaining problem revisited.

during the transfer and 2 gallons will be left in the desert as unused. The Rawlsian

solution is between (3, 3) and (5, 3) causing a waste of 2 gallons during transfer and

up to 2 gallons may be left unused.

The Utilitarian solution is now (9, 1) so that no water is wasted or left behind.

The Nash solution is (
11

2
,
11

4
) maximizing the product of quantities. Again, no

water is left behind according to Nashs solution, however, 7/4 gallons are wasted

during the transfer.

The Kalai-Smorodinsky solution is (
33

5
,
11

5
), so that both travelers fill exactly

11/15 of their total capacities, respectively. With the Kalai-Smorodinsky solution,

total waste is 6/5 gallons due to the spills during the transfer to Traveler B’s leaky

container and no water remains unused in the desert.

Finally, the normalized utilitarian solution suggests a split of (5, 3), leaving no

unused water in the well and causing a waste of 2 gallons during the transfer to

Traveler B’s leaky container. The motivation behind the normalized utilitarian

solution concerns the fairness argument as well as the timing issue and the

reasoning is as follows: Consider the original situation that neither Traveler A nor

Traveler B has any containers. Instead, the containers are also in the desert at a
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Unused capacity
Solution Outcome (proportional)

Egalitarian (3, 3) (2/3, 0)
Rawlsian (3 + x, 3), 0 ≤ x ≤ 2 (6− x/9, 0)
Utilitarian (9, 1) (0, 2/3)
Nash (11/2, 11/4) (7/18, 1/12)
Kalai-Smordinsky (33/5, 11/5) (4/15, 4/15)
Normalized utilitarian (5, 3) (4/9, 0)

Table 2: Solutions to travelers’ bargaining problem in Example 2.

location unknown to both travelers. At one location, there is a 9-gallon container,

while at the other location there lies the leaky 2-gallon container and the 1-gallon

bottle. If Traveler A and Traveler B are equally likely to discover each location of

containers, then they should be able to reach a bargaining solution before the

discovery of the containers. Furthermore, the solution should not change regardless

of the timing of the settlement, whether it was reached before or after the discovery

of the containers.

From the fairness perspective, the normalized utilitarian solution argues that the

two individuals in fact share 10 gallons of water equally (5, 5) ex ante; so that all of

the water is allocated. Although 2 gallons of the water will be wasted during the

transfer, the unlucky traveler who discovers the leaky container is not be punished

again because of her misfortune. They will each get 5 gallons from the well, but the

final allocation will be either (5, 3) or (3, 5), depending on who ends up with the

leaky container. Note that the sum of unused capacity is minimized by the

normalized egalitarian solution at 4
9
.

In this paper, I address the timing effect in convex n-person bargaining problems

(Nash 1950) without requiring interpersonal utility comparisons. I provide an

axiomatic characterization of the normalized utilitarian bargaining solution using

four axioms : Pareto Optimality (PO), Anonymity (AN), Invariance to Equivalent

Utility Representations (INV) and Weak Linearity (WLIN). The first two of these
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axioms (PO and AN) are standard and ubiquitous axioms in axiomatic bargaining.

Axiom INV is also well known in the literature. It simply rules out interpersonal

comparisons of cardinal utilities and it is used by Nash (1950) and Kalai and

Smorodinsky (1975), among others, in characterizing their solutions.

The fourth axiom, Axiom WLIN, is a weaker variant of the Linearity (LIN)

axiom and the central contribution of this paper to the literature. As mentioned

above, linearity in the bargaining literature is introduced by Myerson (1981) as the

no timing effect condition: “the timing of the bargaining can be ignored if and only if

the solution is linear.”

The linearity condition as defined in Myerson (1981) is not compatible with scale

invariance axiom. The WLIN axiom I propose in this paper mitigates this

compatibility problem. This is in parallel to the result that the normalized

utilitarian solution does not require interpersonal comparisons of utilities.

The type of restriction (the ideal point restriction) imposed on linearity

condition by WLIN is quite common in the bargaining literature. The following are

some examples of axioms that apply the ideal point restriction to different axioms:2

Restricted monotonicity (Roth 1979, Thomson 1980, 2010) is an application of the

monotonicity axiom to the pairs of bargaining problems that have the same ideal

point. In characterization of the equal-loss solution, Chun (1988) assumes equality

of ideal points. Based on contraction independence axiom, Xu and Yoshihara (2006)

use the same ideal point restriction for the axiom of weak contraction independence,

in characterizing the Kalai-Smorodinsky solution for non-convex bargaining

problems.

The rest of this paper is organized as follows: Section 2 introduces the notation

and definitions. Section 3 discusses the axioms. Section 4 provides the

characterization of the normalized utilitarian solution and checks the independence

2The formal definitions of these axioms are skipped here and the reader is invited to check the
articles I have cited.
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of the axioms used. Section 5 provides a discussion and concludes. All proofs are

provided in the Appendix.

II.2 Definitions

Let N = {1, 2, . . . , n} be the set of players with n ≥ 2. Let R be the set of all real

numbers, R+ be the set of all non-negative real numbers and R++ be the set of all

positive numbers. Let Rn (resp. Rn
+ and Rn

++) be the n-fold Cartesian product of R

(resp. R+ and R++). For any x, y ∈ Rn
+, I write x > y to mean xi ≥ yi for all i ∈ N

and x 6= y, and x� y to mean xi > yi for all i ∈ N.

For any subset S ⊆ Rn
+, S is said to be non-trivial if there exists s ∈ S such that

s� 0 and comprehensive if for all s, t ∈ Rn
+, s > t and s ∈ S then t ∈ S. For any

two sets S, T ⊆ Rn
+ and for any number λ, I define λS + (1− λ)T to be the set

λS + (1− λ)T = {λs+ (1− λ)t|s ∈ S and t ∈ T}. A positive affine transformation

σ on Rn is a mapping Rn → Rn such that, for some α ∈ Rn
++ and β ∈ Rn,

σ(x) = αx+ β.

The comprehensive hull of a set S ⊂ Rn
+ is the smallest comprehensive set

containing S:

compS = {z ∈ Rn|z ≤ x for some x ∈ S}

The convex-comprehensive hull of a set S ⊂ Rn
+ is the smallest convex

comprehensive set containing S:

convS = {λx+ (1− λ)y|x, y ∈ S and λ ∈ [0, 1]}

For any closed set S ⊆ Rn
+, a point s ∈ S is a boundary point of S if every ball

with s as the center intersects both S and its complement. I denote the set of

boundary points of S as B(S). I define a ∈ S as an extreme point of a convex set S,

if for any b, c ∈ S, a = λb+ (1− λ)c if and only if a = b = c.
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A bargaining problem is defined as a pair (S, d) where S ⊆ Rn
+ is the feasible set,

d ∈ S is the disagreement point. The disagreement point represents the payoffs to be

received by each player if no agreement is reached. It is assumed that there exists

s ∈ S such that s� d. Throughout the discussion I will assume that the

disagreement point is fixed.

Let Σ be the set of all non-trivial, convex, compact and comprehensive subsets

of Rn
+. A bargaining solution F over Σ assigns a non-empty subset F (S, d) ⊂ S for

every bargaining problem (S, d), S ∈ Σ. Note that, this is different from Nash’s

original definition of a solution, since the bargaining solution may be multi-valued.

Let π be a permutation of N and Π denote the set of all permutations of N . For

all x = (xi)i∈N ∈ Rn
+, let π(x) = (xπ(i))i∈N . For all S ∈ Σ and any permutation

π ∈ Π, let π(S) = {π(s)|s ∈ S}. For any S ∈ Σ, S is said to be symmetric if

S = π(S) for all π ∈ Π.

For all S ∈ Σ and all i ∈ N , let mi(S, d) = max{si|(s1, . . . , si, . . . , sn) ∈ S}.

Therefore, m(S, d) = (mi(S, d))i∈N is the ideal point of the bargaining problem S.

Note that m(S, d)� d for any S ∈ Σ.

Definition 1 (Normalized Utilitarian Solution). A solution F over Σ is the

normalized utilitarian solution FNU if for all S ∈ Σ

FNU(S, d) = {s ∈ S|
∑
i∈N

mi − si
mi − di

≤
∑
i∈N

mi − xi
mi − di

for all x ∈ S}.

Note that the above definition uses the minimization of the sum of proportional

losses, which is equivalent to the following standard ‘maximization’ definition of the

normalized utilitarian solution:

FNU(S, d) := {s ∈ S|
∑
i∈N

si − di
mi − di

≥
∑
i∈N

xi − di
mi − di

for all x ∈ S}

The following definition generalizes the normalized utilitarian solution:
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Definition 2 (Generalized Normalized Utilitarian Solution). Let µ = (µ1,. . .,µn)

∈ Rn
+ be a vector. The generalized normalized utilitarian solution FGNU

µ over Σ is

defined by

FGNU
µ (S, d) := arg max

s∈S

∑
i∈N

µi
si − di
mi − di

where mi = maxs∈S si for all i ∈ N .

II.3 Axioms

Pareto Optimality (PO) For all S ∈ Σ and for all s ∈ F (S, d), if x > s then

x /∈ S.

Anonymity (AN) For all S ∈ Σ and for all π ∈ Π, F (π(S), π(d) = π(F (S, d)).

Invariance to Equivalent Utility Representations (INV) For all S ∈ Σ and

for all α ∈ Rn
++ and β ∈ Rn, F (αS + β, αd+ β) = αF (S, d) + β.

The first two axioms above are standard in the literature. PO ensures that the

gains from cooperation are fully exhausted. AN is a stronger version of Nash’s

symmetry axiom. It states that the solution should not depend on any particular

attributes (e.g. the names) of the bargainers.

The INV axiom requires the bargaining solution to be invariant to equivalent

utility representations and only the utility gains of the bargainers over the

disagreement point is meaningful in determination of the bargaining solution. INV

rules out interpersonal comparisons of utility (1) levels (as required by egalitarian

and maximin solutions), and (2) scales (as required by classic utilitarian solution).

In the literature this axiom is sometimes decomposed into translation invariance (β)

and scale invariance (α).

The next axiom is due to Myerson (1981).
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Linearity (LIN) For any S, T ∈ Σ

F (λS + (1− λ)T, d) = λF (S, d) + (1− λ)F (T, d)

for every λ ∈ [0, 1].

LIN states that the timing of the agreement is irrelevant over a bargaining

problem which is obtained through a lottery over two bargaining problems. When

the players face one of the two bargaining problems S and T (with the same

disagreement point) with probability λ and (1− λ) respectively, the timing of the

agreement should not matter. Myerson (1981) combined LIN axiom with PO to

characterize the (generalized) utilitarian solution. It is also known that LIN is not

compatible with INV (Myerson 1978, Pechersky 2006).3

By weakening the LIN axiom in the following way, it is possible to avoid this

impossibility.

Weak Linearity (WLIN) For any S, T ∈ Σ, if m(S) = m(T ), then

F (λS + (1− λ)T, d) = λF (S, d) + (1− λ)F (T, d)

for every λ ∈ [0, 1].

WLIN restricts LIN for the pairs of bargaining problems which have the same

ideal point. That is, the timing effect is irrelevant only if a bargainer expects the

same maximum feasible gain from each of the uncertain bargaining problems (S, d)

and (T, d).

The bargaining problem tomorrow will be S with probability λ and T with

probability (1− λ). Thus, the solution to the bargaining problem will be F (S) with

3Perles (1982) establishes a similar impossibility result with a variant of LIN (super-additivity)
for bargaining problems with n ≥ 3.
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probability λ and F (T ) with probability (1− λ). The bargainers can reach an

agreement today by considering a new bargaining problem λS + (1− λ)T . WLIN

ensures that bargainers will not gain or lose by either delaying or expediting the

agreement.

II.4 Characterization and Independence of Axioms

The following theorems characterize the generalized normalized utilitarian solution

and the normalized utilitarian solutions respectively. Proofs are provided in the

Appendix.

Theorem 1 (Generalized normalized utilitarian solution). A solution F over Σ is

the generalized normalized utilitarian solution FGNU if and only if it satisfies PO,

INV and WLIN.

Theorem 2 (Normalized utilitarian solution). The only GNU bargaining solution

which satisfies AN is the NU solution FNU .

To check the independence of the axioms, first drop AN. The first theorem

(Theorem 1) characterizes the generalized form of the normalized utilitarian solution

using PO, INV, and WLIN, and demonstrates the independence of AN from PO,

INV and WLIN. Theorem 2 demonstrates that the normalized utilitarian solution is

indeed a special case of the generalized form when µi = µj for all i, j ∈ N .

To check the independence of PO, consider the disagreement point d as a

solution. It is easy to verify that d satisfies AN, INV, and WLIN but not PO.

When INV is dropped, the classic utilitarian solution satisfies PO, AN, and

WLIN, but clearly it is not equivalent to the normalized utilitarian solution FNU .

Finally, when WLIN is dropped, consider the Nash solution. The Nash solution

satisfies AN, PO, and INV, but clearly it is not equivalent to the normalized

utilitarian solution FNU .
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II.5 Discussion

The timing of the agreement becomes important if the bargaining problem is

obtained from a lottery of two (or more) bargaining problems. My characterization

in this chapter is built upon Myerson (1981)’s result that the timing effect can be

ignored only if the bargaining solution is linear. The linearity axiom is thus called

the no timing effect condition. Together with Pareto Optimality, linearity implies

that the bargaining solution is the generalized utilitarian solution (Myerson 1981).

The incompatibility of the linearity axiom with the property of invariance to

equivalent utility representations (INV) is to be expected since the utilitarian

solution implicitly assumes interpersonal comparisons of utility (see also Myerson

1978, Pechersky 2006).

To overcome the incompatibility between linearity and the property of invariance

to equivalent utility representations, I use a weaker version of the linearity axiom.

As discussed in the text weak linearity axiom weakens the linearity axiom in such a

way that interpersonal comparisons of utilities are not required but the timing effect

is still critical. This axiom restricts attention to the specific bargaining problems

which have the same ideal point. The linearity axiom imposes a linearity condition

over a lottery of bargaining problems, which can be chosen arbitrarily. In contrast,

the weak linearity axiom requires the “no timing effect” condition to hold only if

these problems agree on the same ideal point. When two or more bargaining

problems agree on the same ideal point, a bargainer will expect the same maximum

payoff from each of these problems.

The contrast between the linearity and weak linearity axioms is akin to the ideal

point restriction applied by Kalai and Smorodinsky (1975) to the monotonicity

axiom. In this respect, for bargaining problems with uncertainty, the contrast

between the normalized utilitarian and Kalai-Smorodinsky solutions can be seen as
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an extension of the well-known trade-off between efficiency and equality. The former

is ex ante efficient while the latter is only ex post efficient (in addition to being

egalitarian). The individual monotonicity axiom (Kalai and Smorodinsky 1975)

imposes ideal point restriction on strong monotonicity, and the normalization of

individual payoffs with respect to the ideal point takes the egalitarian solution to

the Kalai-Smorodinsky solution. Similarly, by the ideal point restriction on the

linearity axiom, the normalization of individual payoffs with respect to the ideal

point takes the utilitarian solution to the normalized utilitarian solution.

In connection with the impartial observer theorem of Harsanyi (1953), the ideal

point restriction imposed by the weak linearity axiom on bargaining problems also

relates to the impartiality restrictions discussed by Karni (1998). Harsanyi’s

utilitarianism defines impartiality by assigning equal weights to individual utilities.

However, as Karni (1998) argues, the equality of weights is not meaningful when

individual utilities can be manipulated by positive affine transformations. By

assigning probabilities to different bargaining problems, linearity implicitly imposes

comparability between such bargaining problems. This is problematic since these

comparisons are not meaningful when each bargaining problem can be manipulated

by rescaling. However, I will argue that these comparisons are meaningful only

between bargaining problems that have the same ideal point, as required by the

weak linearity axiom. Each individual’s payoff is compared intra-personally between

different bargaining problems.4 Intra-personal comparisons of individual utilities are

meaningful in expected utility theory while interpersonal comparisons are not

allowed.

Suppose two bargainers have “something” over which they bargain but they do

not get anything if they fail to reach an agreement.5 The two obvious allocations are

(i) all to first player (ii) all to the second player; hence the ideal point is a function

4Note that the payoffs are not compared interpersonally, so the INV axiom is not violated.
5I would like to thank Uzi Segal for providing this example.
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of the “something”. Now, it is possible to identify games as different allocation rules

or mechanisms: all will have the same ideal point since all have the option of giving

everything to one player, but will have different bargaining sets. There is a fixed

“something” they bargain and naturally, linearity applies only to such sets.

As a result of the weak linearity axiom, the normalized utilitarian solution is ex

ante efficient for convex bargaining problems involving uncertainty. The Nash and

Kalai-Smorodinsky solutions fail to satisfy this property even for two person

bargaining problems.

To illustrate ex ante efficiency, consider the two-person bargaining problem S in

Figure 3, where a, b, and c denote the outcomes reached by Kalai-Smorodinsky

solution, the Nash solution, and the normalized utilitarian solution, respectively.

a

b

c

S

mi

mj m(S)

d

Figure 3: Three bargaining solutions to S: a-Kalai Smorodinsky solution, b-the Nash solu-
tion, c-the normalized utilitarian solution.

Recall that all of the three solutions satisfy the three main axioms of Pareto
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a = a′ = a∗

b

c

b′

c′

c∗

b∗

S

S ′

A = 1
2
S + 1

2
S ′

1

1 1

0

Figure 4: Ex ante efficiency.

optimality, symmetry, and invariance to equivalent utility representations. Suppose

also that the bargaining problem (the shape of S) is known today, but the

bargainers are uncertain about their roles (on which axis they will be represented)

tomorrow. With probability λ, Player A will be located on the horizontal axis,

Player B will be on the vertical axis, and with probability (1− λ) vice versa. The

players can wait until tomorrow so that the uncertainty will be resolved, or they

may use the available information in order to reach an agreement today.

Let S ′ be the symmetric counterpart of S along the 45◦ line. Then, the expected

bargaining problem will be λS + (1− λ)S ′. This is shown in Figure 4 with λ =
1

2
.
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Let the three solutions corresponding to S ′ are defined similarly as a′, b′, and c′

respectively and let the players agree to bargain over the expected bargaining

problem λS + (1− λ)S ′. In that case the expected outcomes under

Kalai-Smorodinsky and Nash solutions, are b∗ = λb+ (1− λ)b′ and

a∗ = λa+ (1− λ)a′, respectively. The expected outcome under the normalized

utilitarian solution is c∗ = λc+ (1− λ)c′. Note that c∗ > b∗ > a∗ = a indicate that

c∗ is ex ante efficient (PO over the expected bargaining problem λS + (1− λ)S ′) but

a∗ and b∗ are not ex ante efficient. In parallel to Pivato (2009), the long-term

expected utility is maximized only through the normalized utilitarian solution over

a random sequence of future bargaining problems.

To my knowledge, Cao (1982) is the first in the literature to introduce the

normalized utilitarian solution (defined as the modified Thomson solution). As

mentioned earlier, this solution is also referred to as the relative utilitarian solutionin

the social choice literature. However, as Segal (2000) points out, this solution is not

utilitarian in nature. The sort of interpersonal comparisons of cardinal utility, which

are fundamental to classical utilitarianism, are ruled out in this solution. However, I

follow the existing literature in this paper and use the term normalized utilitarian

solution (Miyagawa 2002, Thomson 2010) in reference to this solution (Dhillon

1998, Dhillon and Mertens 1999, Segal 2000, Sobel 2001, Pivato 2009).

In general, earlier characterizations of the normalized utilitarian solution (Cao

1982, Dhillon 1998, Dhillon and Mertens 1999) are based on a version of the

monotonicity axiom. Segal (2000) introduces the dictatorship indifference axiom,

and a weaker form of the dictatorship indifference axiom is used by Pivato (2009) to

characterize the normalized utilitarian solution (together with the axioms of strong

linearity and Pareto optimality).

The title (Let’s agree that all dictatorships are equally bad) of Segal (2000) is

somewhat misleading. The dictatorship indifference axiom is interpreted in a way
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that pure dictatorship allocations (i.e. giving everything to a single player) are

“equally undesirable” (Segal 2000, pp. 581). As a matter of fact, the normalized

utilitarian solution does not rule out dictatorship allocations in every case. In a case

that the Pareto frontier of the bargaining problem is parallel to the hyperplane

determined by the dictatorial points, the normalized utilitarian solution is obviously

multi-valued. Furthermore, if this hyperplane is identical to the entire Pareto

frontier, then pure dictatorship solutions are not ruled out.

Consider, for example, a two-person convex bargaining problem given by

S = {x|ax1 + bx2 ≤ 1}. The normalized utilitarian solution for S is the entire

Pareto frontier given by the equation ax1 + bx2 = 1. The pure dictatorial solutions

(
1

a
, 0) and (0,

1

b
) belong to the set of normalized utilitarian solutions. None of the

axioms rule out these solutions.

Pivato (2009) uses an approach that is closer to mine in terms of interpretation,

although the axioms and the formal characterization are different.

As a final remark, the risk properties of von Neumann-Morgenstern utility scales

play a crucial role in the normalized utilitarian solution. Once there is some

uncertainty regarding the bargaining problem, the significance of the weak linearity

condition becomes more evident. Using this phenomenon, every bargaining problem

can be thought as a combination of two or more bargaining problems with different

probabilities. In this context, the normalized utilitarian solution provides ex ante

Pareto optimal solutions.

Accordingly, the contrast between the normalized utilitarian and the

Kalai-Smorodinsky solutions is a natural extension of the well-known efficiency and

equality trade-off utilitarianism and egalitarianism. The Kalai-Smorodinsky

solution, as referred to as the relative egalitarian solution, is weakly Pareto optimal

for bargaining problems with more than two players. After normalization of

individual utilities to [0, 1] scale, the Kalai-Smorodinsky solution has an egalitarian
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objective: the proportionate losses are equal among individuals. The normalized

utilitarian solution uses the same normalization and it has a utilitarian objective:

the sum of proportionate losses among individuals is minimized.



Chapter III

GOVERNMENT’S DILEMMA IN PUBLIC BAILOUTS

III.1 Introduction

The idea of public bailouts is more than a century old. During a time of bank runs

and financial panic, Sir Walter Bagehot (1873) – when discussing last-resort lending

– advised on rescuing the good banks and letting bad banks go insolvent. Today,

the concept of providing public assistance to troubled agents in the private sector in

times of financial distress has been extended to non-financial firms facing the risk of

bankruptcy during economic downturns and countries whose reserves prove

insufficient.6 Recent events across the globe (e.g. the 2008 recession in the U.S. and

the Euro Zone’s troubles with Greece) have once again demonstrated that bailouts

are still crucial assignments in public policy-making.

From an economic perspective, one can provide different justifications, both in

favor of public bailouts and against them. Arguably the most severe criticism is

prominently described by the Samaritan’s Dilemma (cf. Buchanan 1975), where the

strategic interaction between an agent and an altruistic principal causes moral

hazard: Anticipating financial assistance by the principal when in need, agents

engage in excessively risky behavior. In the words of Bagehot (1873): “Any aid to a

6The Federal Deposit Insurance Act of 1950 defines bailouts as “providing assistance, the power
to support an institution through loans or direct federal acquisition of assets, until it could recover
from its distress”.

23



24

present bad bank is the surest mode of preventing the establishment of a future good

bank.”7

To discuss further, Buchanan (1975) demonstrates how modern-day welfare

policies lead to a dilemma when they become the rule of conduct. Calling it the

Samaritan’s Dilemma, he provides insights into the inefficiency of the outcome that

arises through a donor’s decision to supply assistance to a recipient in need. The

dilemma occurs whenever a donor and a recipient interact strategically for at least

two periods.8 Acting in the first period, the recipient can potentially manipulate the

donor’s second-period decision. This strategic interaction leads to moral hazard, as

the recipient finds it beneficial to exert less effort (i.e. behave in a more risky way),

in expectation of more assistance. On the other hand, the donor (policymaker), who

cannot control the recipient’s actions, is caught in a trap, the Samaritan’s Dilemma,

due to her altruism and her rational decision-making.

To address this moral hazard problem in public bailouts, I consider a sequential

game that captures the informational gap between agents and a public policymaker.

My model builds upon the Samaritan’s Dilemma problem, but I relax the

underlying assumptions of altruism and complete information. Therefore, it is an

extension to, not of, the Samaritan’s Dilemma.

The most critical assumption in the literature on the Samaritan’s Dilemma is the

altruism of the principal (public policymaker) who engages in a strategic interaction

with an agent. In this paper, I demonstrate that the moral hazard problem does not

vanish, even when the principal is not altruistic, but is instead concerned with the

negative externalities resulting from an agent’s failure. Moreover, I show that this

result holds whether or not the agent’s effort is observable by the principal. In that

sense, my findings apply to all cases of principal-agent problems of financial

7Naturally, the moral hazard problem is not limited to bailouts, but applies to other types of
assistance, such as charity, donations, debt relief and debt forgiveness, as they also reward and
encourage risky behavior.

8I provide a brief overview of the original model in the Appendix.
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assistance, where the financing is done by a third party (e.g. taxpayers or other

member nations). When there are multiple agents with interdependent prospects,

the problem aggravates: the absence of bailouts leads to inefficient behavior by each

agent as a Nash equilibrium and its presence leads to the well-known moral hazard

problem. Hence the government’s dilemma.

The efficiency-enhancing solutions proposed in the literature for the Samaritan’s

Dilemma include pre-commitment (Buchanan 1975, Chami 1996, Dijkstra 2002),

in-kind or tied transfers (Bruce and Waldman 1990, 1991, Coate 1995). The

pre-commitment solutions require either strong assumptions on the credibility of

these commitments or a strict enforcement mechanism, which is hard to employ in

practice. In parallel to that, in-kind (as opposed to direct financial) transfers are

not practically feasible for public bailouts. Even for the so-called “Rotten Kid

Theorem” (Becker 1974, 1981, Bergstrom 1989), the savings by the selfish kid are

too low relative to the efficient level, and it is hard to attain the Pareto frontier

(Bruce and Waldman 1990).

At this point, it is necessary to explain why the assumption of a non-altruist

principal for the case of public bailouts is critical. The public bailouts in practice

are not due to the government’s altruism towards the private companies that are

rescued. Instead, these banks and firms are rescued by the government from

bankruptcy in order to avoid collateral damage. The argument in favor of a bailout

is that large institutions cannot be allowed to go bankrupt, as their failure might

put the entire (financial) system in jeopardy (“too big to fail”, see e.g. Stern and

Feldman 2004, Gup 2004). This is particularly true in times of a financial crisis due

to an expected contagion effect when the failure of one institution increases the risk

for all others. The main problem is not the altruism of the principal, but is instead

the negative externalities (e.g. systemic risk), and the expected social cost (e.g.

unemployment) after a firm’s bankruptcy. Combining all these third-party costs
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together, a more appropriate term is the dead-weight costs of failure. Based on a

cost-benefit analysis, a public bailout should be offered when the dead-weight costs

of failure in the economy exceed the resulting inefficiency and moral hazard costs.

I also need to point out that bailouts are often political considerations rather

than economic decisions. In general, the justifications in favor of bailouts and the

benefits thereof are highly speculative. For that reason, I limit the discussion

around the conventional justifications for government intervention that are broadly

agreed on in public economics (cf. Tresch 2002): A public bailout is justified when

(i) there is a market failure,

(ii) the mechanism is efficiency enhancing,

(iii) the mechanism minimizes the moral hazard problem,

(iv) negative externalities linked to the mechanism are minimized.

In this chapter, I identify the market failure (i) and address the moral hazard

problem (iii) stemming from the presence of asymmetric information and risk of

failure that has negative externalities (iv). A special case of efficiency enhancing

solution (ii) is laid out in the next chapter.

An overwhelming majority of the literature on public bailouts focuses on the

financial sector. This is not surprising given the importance and frequency of bank

bailouts and the relative proportion of financial sector firms among bailout

recipients. Most of these studies include some variant of a deposit insurance

mechanism (see e.g. Bryant 1980, Diamond and Dybvig 1983). There is also an

abundance of research on the effects of banking bailouts (see e.g. Boyd et al. 2004,

Bryant 1980, Butkiewicz and Lewis 1991, Diamond and Dybvig 1983, Diamond and

Rajan 2002, Gorton and Huang 2004, Kho et al. 2000, Yaron 2005)

Moreover, there is extensive list of papers searching for an optimal bailout policy

and on the effect of different remedies (cf. Ringbom et al. 2004, Rochet and Vives
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2002, among others). In relevance to my study, I would like to point to Ghatak

et al. (2001), who argue using an overlapping generations model that efforts against

risk are negatively affected by a public assistance program. Shim et al. (2008)

extends the pre-commitment option to a framework of an IMF-type institution with

voluntary coinsurance arrangements between agents. Using a model with stochastic

outside shocks, the author demonstrates that ex ante loan contracts are superior to

ex post loans. However, the credibility of these contracts remains mostly

unanswered. As another approach, Dijkstra (2002) shows that changing the

sequence of events and moves also alters the inefficient outcome in the backward

induction game.

My approach differs fundamentally from these models examining bank bailouts,

as I do not require borrowing and lending, and there is no lender of the last resort.

As a result, the bailout mechanism is not restricted to a deposit insurance institution

or a central bank. This flexibility allows me to extend the analysis to include

non-financial sector bailouts, including country bailouts, which are equally common.

The remainder of the chapter is organized as follows: Section III.2 introduces my

basic model that captures the bailout dilemma of a non-altruistic principal under

plausible assumptions. In Section III.3, the model is extended to the case of multiple

agents and the presence of systemic risk. Finally, Section III.4 provides a brief

discussion of my findings and concludes. All proofs are provided in the Appendix.

III.2 The Moral Hazard Problem in Bailouts

As mentioned in the previous section, the Samaritan’s Dilemma is a textbook case

of moral hazard arising from the altruism of a principal. However, altruism is not a

requirement for the presence of moral hazard. It can arise even when the principal is

not concerned with the direct costs of bankruptcy. Instead, there are indirect
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(dead-weight) costs associated with an agent’s failure that harm third-party

individuals (citizens) and therefore enter the principal’s welfare function directly.

In my basic model, an agent (firm) and a principal (government) are involved in

a sequential game. The agent faces a risk of failure (e.g. bankruptcy) and the

principal can provide financial assistance to reduce that risk (bailout). Their

utilities are denoted by U for the agent and W for the principal, respectively. The

game follows the sequence of events described below.

1. The agent moves first and chooses a level of effort e > 0, which reduces the

risk of bankruptcy in case of an external shock. Effort is costly and generates

disutility v(e). The specific assumptions on v are described in Assumption 2.

The effort may be thought of as the level of precautionary measures and risk

management activities carried out by a firm, or savings by an individual, or

reserves by a country in the respective cases.

2. Nature rolls its dice, and with probability π, an exogenous shock (financial

crisis) occurs; otherwise the game ends and the agent collects a positive payoff

y > 0.

3. In case of an exogenous shock, the principal transfers b ≥ 0 to the agent

(bailout).

4. The agent fails with probability p(e, b) and survives with probability

1− p(e, b). The agent receives zero payoff in case of a failure and a strictly

positive payoff of y > 0 otherwise. The agent’s failure causes a social cost of c,

a negative externality, which is borne by the principal.

I make the following assumptions regarding model parameters.

Assumption 1. The agents’ utility function is additive and separable:

U(e) = [1− πp(e, b)] · u(y)− v(e) with u(0) = 0, u′ > 0 u′′ ≤ 0.
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Assumption 2. The cost of effort, v(e), is non-negative, increasing and convex in

e: v(0) = 0, v′ > 0, v′′ > 0.

Assumption 3. The probability of failure, p, is decreasing and convex in e and also

in b.

(a)
∂p

∂e
< 0 and

∂2p

∂e2
> 0

(b)
∂p

∂b
< 0 and

∂2p

∂b2
> 0

(c)
∂2p

∂b∂e
> 0

Assumption 3 states that both effort and bailout reduce the probability of failure

but with diminishing marginal rates. It further implies that a bailout has less of an

impact on the probability of default, the higher the level of effort by the agent.

In this model, the principal offers to help the agent because she is concerned

with the well-being of society as a whole (or more precisely, with the well-being of

the third-party individuals) and thus wants to avoid the social costs caused by the

agent’s failure. In this context, the well-being of society is denoted by W .

The expected utility of the agent is given by

U(e) = u(y)− v(e)− π p(e, b)u(y), (1)

and the agent chooses e to maximize (1). Correspondingly, the principal’s expected

welfare is given by

W (b) = W − π b− π p(e, b) c (2)

and the principal chooses b to maximize (2).
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III.2.1 Complete Information

I first consider the case where the principal can observe e: The agent chooses effort

e in order to maximize (1), and after observing the agent’s choice of effort, e∗, the

principal chooses bailout transfer b to maximize (2).

When the agent’s choice of effort is monitored by the principal, Proposition 1

shows that the agent, in expectation of higher transfers, exerts less effort than

without transfer, provided that the social costs of failure are large enough to justify

a bailout. This result identifies the moral hazard problem in parallel to the

Samaritan’s Dilemma. The key difference here is that the result does not require the

principal to be altruistic, and thus it captures the practical bailout motives.

The following lemma states that the more effort the agent exerts, the less

assitance he can expect from the principal.

Lemma 1. When the principal observes the agent’s effort, higher effort chosen by

the agent leads to lower bailout transfers.

Proposition 1. If the principal can observe the agent’s effort, and if b∗ > 0, the

agent exerts effort below the efficient level.

As a parallel result to the Samaritan’s Dilemma, Proposition 1 identifies the

moral hazard implications of public bailouts when the principal is not altruistic but

the failure of the agent has negative externalities.

III.2.2 Incomplete Information

I shall now demonstrate that the result in the previous section extends to the case

of incomplete information. I do this by extending the Samaritan’s Dilemma in a

second direction: by relaxing the assumption of complete information. Specifically,

the principal selects bailout transfer b in order to maximize Equation (2) without
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observing the agent’s choice of e∗. The following theorem describes the moral

hazard problem of bailouts under incomplete information:

Theorem 3. If the social costs of failure, c, are sufficiently large to justify a bailout

(that is, b∗ > 0), the agent’s optimal effort e∗ is below the efficient level.

Unlike the complete information case, the moral hazard problem is now

conditional when the agent’s effort choice is not observed by the principal. For small

values of social cost c, which is public information, the social cost c is negligible by

the principal, the marginal cost of effort is significantly higher than the marginal

benefit for the agent, the expected bailout money is considerably small b∗, and there

is no moral hazard. On the other hand, the agent’s first condition requires that the

optimal level of effort e∗∗ under the principal’s pre-commitment policy is chosen

when the marginal cost of the effort v′(e ∗ ∗) is equal to the marginal benefits

−∂p
∂e
πu(y).

The strategic considerations by the principal must be so strong (credible) that

the moral hazard problem can be avoided. In theory, the pre-commitment option

works so that b = b̄ and
de

db
= 0. In practice, however, especially when c is

considerably high, the agent can always call the principal’s bluff. For instance, by

knowing that higher employment will harm the government’s popularity, the

management of the bailout firm may dismiss any kind of pre-commitments

announced by the government and therefore choose risky investments and expect to

be rescued in case of a bankruptcy.

The discussion above demonstrates that the moral hazard problem in the

classical Samaritan’s Dilemma is also present under more realistic assumptions in

the context of bailouts: the presence of a bailout mechanism reduces the agent’s

incentives to take precautions independent from whether the principal is altruistic

or concerned with the social costs of the agent’s failure, and whether effort is public
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information or not. The next section extends this analysis to multiple agents and

interdependent failure risk.

III.3 Multiple Agents and Systemic Risk

In this section, the bailout model of Section III.2 is extended to include multiple

agents. While my illustration is with two agents interacting with each other and a

principal, it can be extended to an arbitrary number of agents.

Agents and principal are involved in a bailout game with the sequence of events

as in the single-agent model (cf. Section III.2). I adjust the notation to the new

circumstances by adding subscript i ∈ {1, 2} to the agents’ utilities (ui, vi) and

payouts (yi), the probabilities of failure (pi), bailout transfers (bi) and social costs

(ci). Again, Ui and pi are subject to Assumptions 1, 2 and 3. An additional

assumption can be introduced as the principal satisfies the budget constraint

b1 + b2 ≤ B (3)

for some B > 0 which is exogenously chosen as the upper limit of available funds for

bailouts.

To introduce systemic risk and to capture the agents’ interdependence, let the

probability of an exogenous shock be π = π(e) (where e = (e1, e2)) depend on both

agents’ choices of effort. The mapping π : R2
+ → [0, 1] is subject to the following

assumptions:

Assumption 4. (a) π(e1, e2) = 1 when (e1, e2) = 0.

(b)
∂π

∂ei
< 0 for e� 0.

(c)
∂2π

∂e2
i

> 0 and
∂2π

∂ei∂ej
> 0 for e� 0.
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Assumption 4 requires that the shock is inevitable if one of the agents (or both)

chooses zero effort. Furthermore, the probability of a shock is decreasing in the

agents’ effort choices provided that each agent exerts a positive level of effort.

Following the two agents’ simultaneous choice of effort levels, if there is am

exogenous shock, the principal transfers the optimal bailout amount to each agent,

before each agent fails with probability pi(ei, bi). In particular, I assume for

simplicity that the agents’ failure probabilities are independent.

III.3.1 Optimal Effort without Bailouts

First, as a baseline case, I consider the scenario where the principal precommits to a

bailout policy with b1 = b2 = 0. The agents’ expected utilities are then given by

Ui(ei) = ui(yi)− π(ei, e−i) pi(ei, 0)u(yi)− vi(ei). (4)

Without the principal’s involvement in the game, the two agents optimize their own

efforts by taking each other’s best response effort as given. Accordingly, Agent 1

solves

max
e1

u1(y1)− v1(e1)− π(e1, e
∗
2) p1(e1, 0)u1(y1).

The first order condition for an interior solution is

∂π(e1, e2)

∂e1

p1(e1, 0) +
∂p1(e1, 0)

∂e1

π(e1, e2) = − v
′
1(e1)

u1(y1)
. (5)

Similarly, the first order condition for Agent 2’s maximization problem is

∂π(e1, e2)

∂e2

p2(e2, 0) +
∂p2(e2, 0)

∂e2

π(e1, e2) = − v
′
2(e2)

u2(y2)
. (6)
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Equations 5 and 6 give us the best agents’ response functions e1(e2) and e2(e1).

Under Assumption 4, one agent’s best response effort is decreasing in the other

agent’s choice of effort. The following proposition establishes this result:

Proposition 2. Under Assumption 4,
dei(ej)

dej
< 0.

Let (e∗1, e
∗
2) be the corresponding equilibrium outcome, that is e∗1 = e1(e∗2) and

e∗2 = e2(e∗1). It follows immediately from Proposition 2 that e∗1 < e1(0). Similarly, a

cooperative outcome would enforce both agents to pre-commitments, leading to

dei(ej)

dej
= 0, and thus a Pareto improvement compared to (e∗1, e

∗
2). This result can

be considered as the typical case for under-provision of a public good if one

considers the reduction in the likelihood of a crisis as a public good consumed by

both agents. The main obstacle, however, is the absence of an enforcement

mechanism against cheating by the agents.

From an economic point of view, this may help in rationalizing bailouts in the

same way the provision of public goods by a government is justified; however,

bailouts give rise to the moral hazard problem as described in Proposition 1 and

Theorem 3.

III.3.2 Bailouts under Complete Information

To consider public bailouts with multiple agents, first suppose that the principal can

observe the agents’ levels of effort. By backward induction, the principal’s optimal

transfers bi(ei) are determined as functions of effort, and subsequently the agents’

maximization problem is solved for the optimal level of effort, assuming a transfer

function bi(ei).

The principal’s maximization problem is

max
b1

W (b1) = max
b1

W0 − π(e1, e2) [b1 + b2 + p1(e1, b1) c1 + p2(e2, b2) c2]
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which yields first order conditions

∂pi(ei, bi)

∂bi
= − 1

ci
, (7)

for i ∈ {1, 2}.

Conversely, Agent i ∈ {1, 2} chooses his level of effort by maximizing

max
ei

Ui(ei) = max
ei

ui(yi)− vi(ei)− π(ei, e
∗
−i) pi(ei, bi(ei))ui(yi).

As in Lemma 1, with one step of backward induction, b1 and b2 can be interpreted

as functions of e1 and e2 respectively.

Rewriting Agent i’s expected utility function by updating Equation (4)

EUi(ei) = ui(yi)− π(ei, e−i)pi(ei, bi(ei))u(yi)− vi(ei) (8)

The two agents choose their effort levels simultaneously in order to optimize their

expected utilities by taking each other’s best response effort as given. The first

order condition for Agent 1 is

∂π(e1, e2)

∂e1

p1(e1, b1(e1)) +
∂p1(e1, b1(e1))

∂e1

π(e1, e2) = − v
′
1(e1)

u1(y1)
(9)

Agent 2 has a similar first order condition and these conditions give us the best

response functions e1(e2) and e2(e1).
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Using this information, and by differentiating principal’s first order condition in

(7) totally with respect to e1 and e2 I find:

db1

de1

=

(
∂π
∂e1

+ ∂π
∂e2

de2
de1

)
− πc1

(
∂2p1
∂b1∂e1

)
∂2p1
∂b21

πc1

(10)

db2

de2

=

(
∂π
∂e2

+ ∂π
∂e1

de1
de2

)
− πc2

(
∂2p2
∂b2∂e2

)
∂2p2
∂b22

πc2

(11)

At the same time, using the best response functions e1(e2) and e2(e1) I differentiate

one agent’s first order condition with respect to other agent’s optimal choice of

effort to find

de1

de2

= −
p ∂2π
∂e1∂e2

+ ∂p1
∂e1

∂π
∂e2

p∂
2π
∂e21

+ ∂π
∂e1

(
∂p1
∂e1

+ ∂p1
∂b1

db1
de1

)
+ π

(
∂2p1
∂e1∂b1

db1
de1

+ ∂2p1
∂e21

)
+ ∂p1

∂e1
∂π
∂e1

+ v′′

u1(y1)

Combining the last equation with (10) and solving them recursively, I find that

dbi
dei

< 0 and
dei
dej

< 0 under Assumption 4.

Let e∗∗ = (e∗∗1 , e
∗∗
2 ) be the vector of optimal efforts chosen by both agents.

Comparing it to the outcome e∗ = (e∗1, e
∗
2) in the previous section, I see that

e∗∗ � e∗. As a result, the presence of a public bailout mechanism further

deteriorates the equilibrium.

Theorem 4. When the agents’ effort levels are observable by the principal and

b = (b1, b2) > 0, both agents show less effort than the efficient level.

Proof of Theorem 4. Follows from the previous discussion.

III.3.3 Bailouts under Incomplete Information

The result in the previous section can be extended to a case with incomplete

information, provided that there exists an imperfect market indicator observed by

the principal. Typically, this type of an aggregate indicator is obtained after
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analyzing aggregate market data, which does not allow the principal to identify each

agent’s choice of effort level separately. For example, when each agent borrows some

amount from the money market, and that borrowing amount is linked to the agent’s

effort level, it is possible to estimate the total borrowing amount by looking at

market data (e.g. money supply, interest rates) although it is not possible to

identify each and every agent’s borrowing. Similarly, when every agent in the

market involves in riskier investments (that is low effort), the market data will

imperfectly reveal the aggregate trend of risk perception, although it is not possible

to identify individual risk levels.

I introduce such an indicator λ = λ(e) to the model, which is observed by the

principal where e = (e1, e2) is the vector of the agents’ choices of effort and

λ : R2
+ → [0, 1]. I assume that the mapping λ satisfies the following:

Assumption 5. λ is monotonically increasing in e.

Lemma 2. The probability of a shock is decreasing in agents’ effort choices, hence

decreasing in λ :
dπ

dλ
< 0

Proof of Lemma 2. Follows immediately from Assumption 5.

By Lemma 2, the result established in Theorem 4 can be extended to the

incomplete information case where the agents’ efforts are not directly observable by

the principal but an imperfect and aggregate market indicator exists.

III.4 Further Remarks

In my model, first note that the principal has a participation constraint in order to

offer a bailout policy. That is, the principal needs to expect a higher level of welfare

compared to the case of not bailing out the agent. Let the optimal levels of effort be

e∗ (with a bailout) and e∗∗ without a bailout. The participation constraint for the
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principal is

EW (b∗) = W − πb∗ − πp(e∗, b∗)c > W − πp(e∗∗, 0)c = EW (0)

simplified to

b∗ < (p(e∗∗, 0)− p(e∗, b∗))c (12)

Equation 12 can be interpreted in the following way: If any of the terms on the

right-hand-side of (12) converges to zero, then a bailout is not a socially preferable

action. When the principals transfer of bailout funds to the agent does not yield

any significant effect on the probability of success, i.e. if p(e∗, b∗) = p(e∗∗, 0), then a

bailout decision is not socially preferable and the agent should not be bailed out.

On the other hand, if the social cost of a bankruptcy is negligible for the principal,

that is c close to zero, then no funds should be transferred to the agent either.

One interpretation of the result being dependent on the value of c is popularly

known as the case of “too big to fail”. In practice, c is linked to the size of a firm

and there are many ways to measure that size, e.g. the number of employees hired

by the firm. It is possible to argue that the failure of the firm should be prevented

to avoid a substantial increase in unemployment. Consider for example the auto

bailouts in Michigan in 2008. The market share of Michigan-based automobile

manufacturers have been declining for many decades, but they remained as the

main employer of auto-workers in that state. Then, one can argue that, during the

automotive industry crisis of 2008-10, the main factor that motivated the public

bailout of these manufacturers was to avoid bankruptcy and ensuing layoffs.

I would like to point out that this part of discussion on hypothetical values of c

is often political rather than relying on economic reasoning, unless there are

accurate estimations of c. In practice, these estimates are not available and the

exact values of c are more often than not speculative. The assessment relies heavily
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on hypothetical and untestable “what if” scenarios: Once a bailout proposal is put

on the agenda, the costs are always claimed to be “too big”, and a government

intervention through a bailout seems and absolute necessity. This situation can be

confirmed merely by following the narrative of the bailouts, as one will often hear

the words “unprecedented challenges” faced by the private firms and the

government’s objective to “save the economy from another catastrophe like the

Great Depression”. From this perspective, the discussion is fruitful only after

careful estimates on the social cost c. Consider the cases of Lehman Brothers (LB)

and Bear Sterns (BS) are considered, where the former was let fail and the latter

was rescued although there were marginal difference in their respective externality

costs cLB and cBS. Once c is assumed to be sufficiently high so that a bailout is

justified, then the moral hazard result is unavoidable. In the opposite case where c

is sufficiently low and negligible, the moral hazard is not a problem anyway because

there will be no bailouts.



Chapter IV

EFFICIENCY ENHANCING SIGNALING IN BAILOUTS

IV.1 Introduction

Since the 2008 recession, the idea of public bailouts has once again been on the

minds of economists, policymakers, and concerned citizens across Europe and the

U.S. The subject remains widely disputed: Advocates tend to argue that bailouts

could prevent the dead-weight costs of market failure, while opponents point to the

moral hazard problem that arises when agents expect to be bailed out in case of

failure. Rather than taking sides in this debate, I aim to add to the discussion by

exploring the signaling effect of a bailout rejection in this chapter.

I design a sequential bailout game, in which a principal offers the agents financial

assistance to reduce their risk of failure. I show that under certain conditions, the

bailout offer induces a separating equilibrium in which the offer is accepted by the

bad-type agents and rejected by the good-types. The rejection sends a signal of

financial strength and self-confidence to the markets, and thus bailout mechanisms

provide an opportunity for a good-type agent to reveal his type to the markets.

Moreover, this signaling property of bailouts can actually mitigate the moral hazard

problem: By endogenizing the agent’s type (through costly effort), I demonstrate

that the presence of a bailout mechanism may induce some agents to increase their

level of effort (by anticipating and subsequently rejecting the bailout offer).

40
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The insights from the model are not limited to financial sector bailouts. The

following cases can be considered as typical examples: individuals refusing

assistance out of pride;9 countries rejecting financial support from the IMF,

members of a currency union (e.g. Euro Zone) rejecting assistance in order to avoid

lower demand at the next bond auction and a potential drop in foreign investments,

firms (in financial as well as non-financial sectors) rejecting a government bailout

that would potentially damage their reputation and raise questions about their

future profitability. On the final case, consider the following extract from a

newspaper article reporting on the events during the recent U.S. bank bailout:

“The chief executives of the nine largest banks in the United States

trooped into a gilded conference room at the Treasury Department at 3

p.m. Monday. To their astonishment, they were each handed a one-page

document that said they agreed to sell shares to the government, then

Treasury Secretary Henry M. Paulson Jr. said they must sign it before

they left. The chairman of Wells Fargo, Richard M. Kovacevich,

protested strongly that, unlike his New York rivals, his bank was not in

trouble because of investments in exotic mortgages, and did not need a

bailout, according to people briefed on the meeting.” (Drama Behind a

Banking Deal, New York Times, Page A1, October 15, 2008.)

At first glance, a bailout offer may be seen from the agent’s perspective as “free

money”, and its rejection counterintuitive. Signaling theory (introduced e.g. Akerlof

1970, Spence 1973, 1974, 1981), however, helps us explain why good-type agents may

engage in seemingly wasteful actions in order to reveal their unobservable quality.

Also the Counter-Signaling theory (cf. Feltovich et al. 2002) extends this standard

implication to the case of a self-confident agent sending a signal by not sending any

9For instance, you may not want to become a welfare recipient because you worry that others
might think you cannot make it on your own.
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signal. The analysis in this chapter links to both cases. In the context of public

bailouts, the financial assistance provided by a central bank may look like a “free

lunch” for a mediocre bank. Is it worth putting its public image and perception at

risk by accepting the offer and being pooled together with the most risky banks?

In addition to applying a variant of Counter-Signaling theory to public bailouts,

I enhance the model with moral hazard, which has interesting implications.

Intuitively, the moral hazard problem in bailouts stems from agents benefiting from

assistance primarily when they are in bad shape facing a risk of failure, as I have

shown in the previous chapter. With the signaling opportunity in presence, the

bailout mechanism provides a benefit for good-type agents as well, and thus gives

agents additional incentives to become a “good-type”. Hence, moral hazard and

signaling work in opposite directions.

The equilibrium outcome heavily depends on the specifications of the payoffs

(market valuation) and the cost structure in the marketplace. In a

reputation-driven market, for instance, signaling is quite valuable, and agents are

more likely to exert high effort when a bailout mechanism is in place, so that they

can be later distinguished.

As discussed in the previous chapter, the textbook case for the moral hazard

problem is identified with the Samaritan’s Dilemma (cf. Buchanan 1975), which

provides a practical framework for bailout situations. As a reminder,

efficiency-enhancing solutions to the Samaritan’s Dilemma in the literature are

pre-commitment (see e.g. Buchanan 1975, Chami 1996, Dijkstra 2002) and in-kind

or tied transfers (cf. Bruce and Waldman 1990, 1991, Coate 1995). The credibility

of these commitment contracts and their enforceability are questionable, and in-kind

transfers are not practically feasible for the case of public bailouts.

Lagerlof (2004) demonstrates that the moral hazard problem is mitigated when

the assumption of complete information is relaxed in a way that gives the agent’s
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level of savings (effort) a signaling value. My intuition is similar in nature, but I

employ a different model specification and signaling mechanism. For instance, as in

the previous chapter, the principal in my model is not altruistic per se, but

concerned with the externality costs of the agent’s failure. More important, the

agent’s choice of effort remains private information, and only his response to the

bailout offer can serve as a signal.

The common ground, however, is the presence of adverse selection that is

necessary for the signaling to work. When for some agents – but not all – the

appreciation in market value exceeds the bailout funds, a separating equilibrium

arises where the bailout proposal is accepted only by the less financially sound

agents. For them, it is not possible to mimick the good-type agents since rejecting

the bailout is too costly. In my simplified model, the agent’s type is thus truthfully

revealed, and his market value will adjust as a result of investor demand.

The remainder of the paper is organized as follows: Section IV.2 develops the

basic model of adverse selection in bailouts. In Section IV.3 I extend this model to

incorporate the moral hazard problem. Section IV.4 provides the general

comparative static results and discusses policy implications, and Section IV.5

concludes. All proofs are provided in the Appendix.

IV.2 Adverse Selection and Signaling in Bailouts

To address the problem of adverse selection in public bailouts, I design a

principal-agent model with hidden information, where the agent faces a risk of

failure (bankruptcy) and the principal can provide financial assistance (bailout).

The agent subsequently chooses whether to accept or reject the bailout offer.

The agent can be one of two types, θ ∈ Θ = {H,L}, that differ by their

respective failure rates and payoffs. I denote the probability that the agent is of

high type by Pr(θ = H) ≡ µ. Specifically, the agent fails with probability pθ(b) if he
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accepts the bailout offer b, and pθ(0) if he declines. Thereby, b ≥ 0 denotes the

bailout amount the principal offers to the agent.

I make the following straightforward assumption.

Assumption 6.

(a) 0 < pH(b) < pL(b) ≤ 1, for any b ≥ 0.

(b) For any given b ≥ 0, p′L(b) < p′H(b) < 0.

(c) p′′θ(.) > 0.

Assumption 6 (a) states that given the same financial assistance, the low-type

agent is more likely to fail. Part (b) implies that a larger bailout reduces the risk of

failure further, and that a bailout is more effective for the low-type agent. Finally,

(c) expresses the diminishing marginal value of a bailout: an additional dollar of

help is less effective when the agent has already received a substantial amount.

Assumption 6 immediately implies the following result:

Lemma 3.

1− pH(b)

1− pH(0)
<

1− pL(b)

1− pL(0)

The immediate and direct costs of bankruptcy are borne by the agent: His

failure yields a payoff of 0, but he receives a positive payout yθφ > 0 otherwise.

Thereby θ is the agent’s true type, and φ ∈ {H,L,M} denotes how the agent is

perceived by the market, with φ = M standing for the market being unable to

distinguish between the two types. The agent’s well-being is given by the expected

utility over his payoff. I require his utility function U(y) to be well-behaved, that is:

Assumption 7.

U(0) = 0, U ′(.) > 0, and U ′′(.) ≤ 0.
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To simplify notation, I define uθφ ≡ U(yθφ) for the purpose of my analysis.

Naturally, on the basis of survivability, the high-type agent should be better off than

the low-type agent, under the same market perception. I also require that a more

favorable perception by the market is reflected in the agent’s payoffs. That is:

Assumption 8.

(a) uHφ > uLφ for any φ, and

(b) uθH > uθM > uθL for any θ.

The latter restriction reflects that e.g. a firm with good reputation has easier and

cheaper access to borrowing or having more customers and is overall more profitable.

While not being altruistic per se, the principal has to carry the indirect (that is,

social) costs of the agent’s failure, which I denote by c > 0. The principal chooses b

in order to maximize her well-being, which – in the case where only the low-type

agent accepts the offer – is given by

W (b) = W0 − (1− µ) b− (1− µ) pL(b) c.

In sum, I propose a bailout game with the following sequence of events:

1. The agent observes its type drawn from Θ. He is of type H with probability µ

and type L with probability 1− µ.

2. Without observing the agent’s type, the principal offers bailout transfer b.

The bailout transfer lowers the risk of failure as discussed above.

3. The agent decides whether to Accept or Reject the bailout offer.

4. Nature rolls its dice and the payoffs are realized. The agent fails with

probability pθ(b) and survives with probability 1− pθ(b). If the agent fails, he
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receives a payoff of 0 and causes a social cost equal to c. In case of survival,

there is no social cost, and the agent receives payoff yθφ > 0, with

corresponding utility uθφ.

Since there are two types of agents, each with a choice between two alternatives

(namely whether to Accept or Reject the bailout proposal), there are four potential

equilibrium outcomes: Two pooling equilibria, where either both types Accept or

Reject; and two separating outcomes where one type Accepts the bailout and the

other Rejects it. I define Ψ ∈ {A,R}2 as the two-dimensional response set of a

high-type and a low-type agent to the bailout proposal. For instance, I denote the

case where the high-type Accepts and the low type agent Rejects the bailout with

ψ = (A,R), and so forth. Therefore, a pooling equilibrium requires a response of

(A,A) or (R,R), and the potential separating equilibria entail (A,R) or (R,A). I

now consider each case individually.

IV.2.1 Pooling Equilibria

ψ = (A,A)

In a pooling equilibrium where both types Accept, an agent will have a payoff of

yθM . Conversely, if the agent were to Reject the bailout, the market values him as a

high-type, so that his payoff is yθH .10

For ψ = (A,A) to be an equilibrium outcome, both agents would need to Accept

the bailout offer b∗AA; and b∗AA must maximize the principal’s welfare function, given

that both types Accept the bailout. When the agent is of high type, θ = H, he

Accepts the bailout proposal b∗AA if and only if

pH(b∗AA) 0 + (1− pH(b∗AA))uHM > pH(0) 0 + (1− pH(0))uHH ,

10This assumption is in line with the findings (see below) that the high-type agent might be able
to signal his type by rejecting the bailout.
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which simplifies to

1− pH(b∗AA)

1− pH(0)
>
uHH
uHM

. (13)

Similarly, a low-type agent Accepts b∗AA if and only if

1− pL(b∗AA)

1− pL(0)
>
uLH
uLM

. (14)

On the other hand, the principal chooses the bailout proposal b = b∗AA so as to

maximize

WAA(b) = µ[W0 − b− pH(b)c] + (1− µ)[W0 − b− pL(b)c].

This yields the first-order condition

µ p′H(b) + (1− µ) p′L(b)|b=b∗AA = −1

c
, (15)

and the following result is obtained.

Proposition 3. There exists a pooling equilibrium where both types Accept the

bailout offer b∗AA given as the solution to Equation (15), if the following conditions

hold:

• b∗AA > 0.

• 1− pH(b∗AA)

1− pH(0)
>
uHH
uHM

.

• 1− pH(b∗AA)

1− pH(0)
>
uLH
uLM

.

Proof. Follows from the previous discussion.
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ψ = (R,R)

When both types Reject the bailout, the principal’s expected welfare is

WRR(b) = µ[W0 − pH(0) c] + (1− µ)[W0 − pL(0) c], (16)

which is independent of b, as expected. Nonetheless, the bailout offer needs to

induce both types to Reject it. I therefore set b∗RR = 0, since this is the weakest

restriction to induce compliance by the agent. Hence no bailout is offered, and the

resulting equilibrium is a trivial one.

IV.2.2 Separating Equilibria

ψ = (A,R)

First consider the separating case (A,R), where the high-type Accepts the bailout

and the low-type Rejects. Clearly, this is not a feasible outcome: the low-type will

be better off by mimicking the high-type by Accepting the bailout, which would not

only reduce his risk, but also increase his market value.

ψ = (R,A)

Lastly, I address the most interesting case where only the low-type agent Accepts

the bailout offer. In the corresponding (separating) equilibrium, the agent will be

valued by the market as a high-type (and get utility uθH) if he Rejects the bailout,

and as a low-type (with utility uθL) if he Accepts the proposal. Hence, for a

high-type agent to Reject the bailout offer b∗RA, it is needed

pH(0) 0 + (1− pH(0))uHH > pH(b∗RA) 0 + (1− pH(b∗RA)) yHL
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which simplifies to

1− pH(b∗RA)

1− pH(0)
<
uHH
uHL

. (17)

Similarly, a low-type agent Accepts b∗RA if and only if

1− pL(b∗RA)

1− pL(0)
<
uLH
uLL

. (18)

This implies the following lemma.

Lemma 4. It is optimal for a low-type agent to Accept b∗RA and for a high-type

agent to Reject the bailout if and only if Inequalities (17) and (18) are satisfied.

Proof. Follows from the previous discussion.

I now turn to the principal’s optimization problem:

Lemma 5. If ψ = (R,A), the principal’s welfare is maximized at b∗RA given by

p′L(b∗RA) = −1

c
.

These findings are combined to obtain the conditions for a separating

equilibrium. For simplicity, I summarize the underlying assumptions, before stating

the main theorem of this section.

Assumption 9.

(a) b∗RA = p′L
−1

(−1/c) > 0.

(b)
1− pH(b∗RA)

1− pH(0)
<
uHH
uHL

.

(c)
uLH
uLL

<
1− pL(b∗RA)

1− pL(0)
.
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Theorem 5. (Efficiency Enhancing Signaling)

Under Assumption 9, there exists a separating equilibrium where the low-type

agent Accepts the bailout proposal b∗RA = p′L
−1(−1/c), and the high-type agent

Rejects the offer.

In the present case, the high-type agent takes advantage of the signaling

mechanism. By rejecting the bailout offer, he reveals his type, sending a message

that he does not need any assistance. In contrast, rejecting the bailout offer is too

costly for the low-type agent, and he takes advantage of the bailout assistance in

order to reduce the risk of failure.

In the following section, I enhance the model by endogenizing the agent’s type

through costly effort. I demonstrate in this context that a bailout mechanism may

also cause moral hazard, in parallel to the findings of the previous chapter.

However, I observe that the presence of a bailout offer can also have a positive effect

on the agents’ level of effort, namely by allowing high-type agents to signal their

financial superiority to the market.

IV.3 Bailouts with Moral Hazard and Adverse Selection

I want to explore the effect of the signaling mechanism described in Section IV.2 on

the moral hazard problem that is so common in bailouts. For the signaling

mechanism to work, I require a separating equilibrium, where only the low-type

agent Accepts the principal’s bailout proposal. Focusing on this scenario, I expand

the principal-agent model from Section IV.2 by allowing the agent to select his type

through costly effort.

I describe conditions that shape the agent’s optimal effort choice and compare

those to the optimal effort level without the bailout mechanism. Then it is possible

to identify the conditions under which the existence of a bailout plan gives rise to
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moral hazard. Perhaps more interestingly, it is also possible to describe scenarios

where the signaling opportunity mitigates or even reverses the moral hazard

problem.

IV.3.1 A Separating Equilibrium with Bailouts

I assume a continuum of agents that first choose whether to exert high effort eH > 0

and become a high-type agent or instead choose zero effort to become a low-type

agent. Agents differ (solely) in how costly it is for them to exert high effort, and

their disutility is given by vτH ≡ vτ (eH), where τ denotes the agent’s type in regard

to productivity. For simplicity I also assume that vτ (0) = 0 for all τ . Note that the

agent’s type, θ ∈ Θ = {H,L}, depends solely on his choice of effort. Moreover, as in

the previous section, the agent’s type is the only determinant for his payout, and his

probability of failure.

The remaining steps of the model coincide with the sequential game from

Section IV.2. That is:

1. Each agent decides whether to become a high-type or a low-type by choosing

the respective level of effort. His choice, as well as his productivity-type τ

remain private information.

2. The principal offers bailout transfer b > 0. The bailout reduces the probability

of failure, which is consistent with Assumption 6.

3. The agent Accepts or Rejects the bailout offer. If he Accepts, the market will

view him as a low-type so that he receives a utility of uθL). Conversely, he will

be considered a high-type agent with utility uθH if he Rejects the bailout offer.

In particular, I require Assumptions 7 and 8 to hold.
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4. Nature rolls its dice and the payoffs are realized. As before, an agent’s failure

results in personal utility 0 and social costs c. If he survives, he gains utility

uθφ, and there are no social costs.

Lemma 4 describes the condition under which an agent Accepts the bailout if he

initially choses low effort and Rejects the bailout after choosing high effort. In this

separating equilibrium, the principal’s optimal bailout offer b∗ is again given by

Lemma 5.

Combining these results essentially characterizes a separating equilibrium, akin

to Section IV.2, for the second part of the game. The novel feature of this section is

the choice of effort that precedes the separation and signaling process and that

specifies an agent as a high-type or as a low-type. The analysis yields the following

result:

Theorem 6. Under Assumption 9, there exists a separating equilibrium under

which the principal offers bailout b∗ given by the identity p′L(b∗) = −1

c
, and where it

is optimal for the agent to . . .

(a) . . . choose low effort and Accept the bailout if

vτH > [1− pH(0)] · uHH − [1− pL(b∗)] · uLL. (19)

(b) . . . choose high effort and Reject the bailout otherwise.

I now consider the optimal choice of effort when no bailout mechanism is present.

IV.3.2 Optimal Effort without Bailouts

In the absence of a bailout mechanism, an agent has no opportunity to signal his

type and he will be treated as an “average”-type by the market. Similar to Section

IV.2, his utility in case of survival is given by uHM if he exerts high effort, and uLM
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otherwise. In particular, the conditions specified in Assumption 8 hold. Hence,

when exerting low effort, the agent’s expected utility is given by

EUL ≡ pL(0) · 0 + [1− pL(0)] · uLM ,

and in the case of high effort he receives

EUH ≡ pH(0) · 0 + [1− pH(0)] · uHM − vτH .

This immediately leads to the following proposition.

Proposition 4. It is optimal for the agent to exert low effort if and only if

vτH > [1− pH(0)] · uHM − [1− pL(0)] · uLM . (20)

Proof. Follows from the previous discussion.

IV.3.3 Effect of Bailout Mechanism on Optimal Effort

To analyze the impact of a bailout mechanism on an agent’s optimal level of effort,

a comparison is needed between Equations (19) and (20). If the agent is inefficient

and effort is extremely costly, vτH is large and both inequalities are satisfied. In that

case, zero effort is optimal both with and without a bailout offer. Conversely, for

efficient agents both inequalities are violated, and the agent exerts high effort in

both cases.

More interestingly, it is also possible for one inequality to be satisfied while the

other is violated. The following two theorems characterize the respective outcomes:

Theorem 7 (Samaritan’s Dilemma, revisited). Under Assumption 9, and if

[1−pH(0)] ·uHM − [1−pL(0)] ·uLM > vτH > [1−pH(0)] ·uHH− [1−pL(b∗)] ·uLL, (21)
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the introduction of a bailout mechanism reduces the agent’s optimal level of effort.

Theorem 8 (Efficiency-Enhancing Signaling, revisited). Under Assumption 9, and

if

[1−pH(0)] ·uHM − [1−pL(0)] ·uLM < vτH < [1−pH(0)] ·uHH− [1−pL(b∗)] ·uLL, (22)

the presence of a bailout mechanism increases the agent’s optimal level of effort from

0 to eH .

Theorems 7 and 8 demonstrate that the bailout mechanism can both cause and

reverse moral hazard, depending on market specifications. Provided that

Assumption 9 holds, and if

[1− pH(0)] · uHM − [1− pL(0)] · uLM > [1− pH(0)] · uHH − [1− pL(b∗)] · uLL, (23)

the moral hazard problem dominates: medium-efficient agents, for which Inequality

(21) holds, settle for becoming a low-type. However, they would have exerted high

effort if it were not for the bailout mechanism. In addition, the more efficient

agents, for which vτH < [1− pH(0)] · uHH − [1− pL(b∗)] · uLL, will choose high effort

regardless of the bailout; conversely, the less efficient agents, characterized by

vτH > [1− pH(0)] · uHM − [1− pL(0)] · uLM , will exert no effort in both cases.

When Inequality 23 is reversed, the signaling opportunity reverses the moral

hazard problem for some agents, namely those that satisfy Inequality (22). Similary

to the previous case, the inefficient agents

(vτH > [1− pH(0)] · uHH − [1− pL(b∗)] · uLL) will shirk either way, and the most

efficient agents (vτH < [1− pH(0)] · uHM − [1− pL(0)] · uLM) exert high effort,

regardless of the bailout situation.
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It remains to be shown that it is possible for both scenarios to arise. For that

matter, note that Inequality (23) can be rewritten as

[1− pH(0)] · uHH − uHM
uLL

+ [1− pL(0)] · uLM − uLL
uLL

<
> pL(0)− pL(b∗). (24)

Both fractions are positive by Assumption 8. The right-hand side is also positive by

Assumption 6. The sign of this inequality depends on the differences in payoffs

relative to the impact of a bailout: if for instance the payoff levels are rather similar

(that is, if the fractions in Equation (24) are small), or if an agent who chose a low

level of effort and who would consequently benefit significantly from the bailout

(that is, pL(0)− pL(b∗) is large), then the conditions for Theorem 7 may be satisfied.

In that case, the anticipation of a bailout leads to moral hazard as the agent reduces

its level of effort.

Conversely, if the return to signaling (uHH − uHM) is considerable, or if the

optimal bailout amount reduces the failure rate of the agent only slightly (that is if

pL(0)− pL(b∗) is small), the right-hand side of Equation (21) exceeds the left-hand

side. If the disutility of effort (vτH) matches as well, Theorem 8 applies: the agent

exerts a high level of effort when anticipating a bailout offer because it intends to

use the offer (by rejecting it) in order to signal its type to the market. In essence,

the bailout mechanism gives the agent an opportunity to signal the market that he

exerted a high level of effort. Without the bailout mechanism, he could not send

this signal and therefore would initially exert less effort.

IV.4 Comparative Statics and Welfare Analysis

It is possible now to evaluate the welfare implications of these results. In this

section, I study how the choice of equilibrium varies as the specific parameters of
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the model change. To do so, I will separately look at the impact of productivity,

payoffs, market characteristics and the social cost.

IV.4.1 Equilibrium Selection

The principal’s concern for the social cost c will be reflected in her choice of the

bailout transfer b∗. For small values of c, the optimal bailout decision is trivially

b∗ = 0, and the results shown in Section IV.3.2 apply. Thus, from now on, I assume

that c is not negligible to the extent that p′θ
−1(−1/c) > 0.

From an agent’s perspective, the selection of the equilibrium outcome depends

on two crucial parameters: his productivity and his expected payout structure. For

instance, his productivity, that is the costliness of effort (vτθ ), determines both the

choice of effort e and the final decision to Accept or Reject the bailout. Moreover,

the payoff and utility structure of the agent play a crucial role in effort choice and

equilibrium selection.

Starting with the latter, note that it is necessary to distinguish the difference

between the two types of agents (i.e. uHφ − uLφ) from the impact of market

perception (i.e. uθH − uθL). More generally, the equilibrium outcome can be affected

by the agent’s risk aversion: Since risk-neutral agents are more prone to failure, an

aversion to risk tends to lower the cost of a bailout in either equilibrium by pushing

the agent towards a higher level of effort.

Another critical factor is the market perception of the agent. As demonstrated

at the end of Section IV.3, if the payoff structure is heavily influenced by outside

opinion, the return to signaling is high, and a separating equilibrium becomes more

likely. Such a situation is more likely to occur in the financial services industry than

for manufacturers’ whose asset values generally exhibit less volatility and can be

determined more accurately.



57

Signaling can also be quite valuable for firms that are publicly traded, as they

tend to put more emphasis on their outside image, in addition to their internal

operations and risk management. It further matters how perfectly the respective

market sector relays information: If every piece of public information about the

agent is captured by the stock price, then the possibility of a separating equilibrium

through signaling will be higher as well.

From the conditions of Theorem 8, it is possible to deduce that a separating

equilibrium is more likely if the dispersion in vτθ is high in an economy with a

continuum of agents. This is particularly true when some agents are significantly

more productive than others and thus have cheaper access to precautionary

measures. Since Inequality 19 is immediately violated, it is optimal for a productive

agent to exert high effort. Trivially, this outcome is efficient: neither the principal

nor the agent can be made better off. Conversely, in sectors of the economy where

productivity is widely homogeneous, the margin for a separating equilibrium is very

narrow. An empirical investigation is necessary if one wishes to identify and

contrast the cases of the bailouts in different sectors, but this is beyond the scope of

the current study.

IV.4.2 An Illustration of Bankruptcy Risk

For illustrative purposes, consider the following functional form for the agent’s

bankruptcy risk:

p(b;αθ, βθ) =
αθ

(1 + b)βθ
. (25)

which asymptotes to a probability of failure zero with p(0) = α. Here, α ≤ 1 can be

used to constrain agents to a maximum level of risk while βθ > 0 indicates the

relative efficacy of the bailout money on the probability of failure. In this

formulation, one can pick αH for agents with high effort and αL for low (or zero)

effort (with αH < αL). Although, a similar argument can be made for the values β
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can take, Assumption 6 implies βH = βL ≡ β.11 A graphic illustration of p(·) is

provided in Figure 5.

b

p(b)

p = 1

αL

pL(b)

αH

pH (b)

Figure 5: The risk of failure with 1 > αL > αH > 0 and βH = βL.

Lemma 5 specifies an internal solution to the principal’s optimization problem

under a separating equilibrium. When social costs are identical across types (as

assumed), it follows that b∗L > b∗H . That is, if the agent’s type was known by the

principal, a low-type agent should expect a larger bailout offer than a high-type.

See Figure 6 for an illustration.

With the functional form assumption of Equation 25, it follows that

b∗ = (αL β c)
1

1+β − 1

11According to Assumption 6, βH < βL implies pL(b) < pH(b) for some b > 0, and βH > βL
implies p′L(b) > p′H(b) for some b > 0.
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b

p(b)

p = 1

αL

pL(b)

αH

pH (b)

slope= − 1
c

slope= − 1
c

b∗Lb∗H

Figure 6: Optimal bailout transfers when social cost c is identical across types.

as the optimal bailout offer to the low-type agent. For an agent to actually choose

low (or zero) effort and subsequently Accept the bailout offer, it is required that

vτH > uHH(1− αH)− uLL
(

1− 1

βc

)
. (26)

Since the right-hand side of (26) is decreasing in c, this condition is more likely to

be satisfied when the social cost of the agent’s failure is substantially large. In other

words: ceteris paribus, an agent whose failure is significantly harmful to society

tends to exert less effort than an agent whose failure is relatively lest critical.

The intuition is that the agent can expect a larger bailout offer (note that b∗ is

also increasing in c), and therefore transferring some of the risk onto the public by

reducing risk-management activities is preferable. If at the same time

vτH < (1− αH)uHM − (1− αL)uLM , (27)
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then the agent would have exerted high effort were it not for the (rational)

anticipation of a bailout. This is the moral hazard problem that is a common

concern surrounding public bailouts.

Conversely, if the agent’s failure is not that costly to society, so that Inequality

(26) is violated, the agent – anticipating only a small bailout – optimally exerts high

effort. Note that by the separating equilibrium conditions, he still benefits from the

bailout offer, namely by signaling his type through a rejection. More important, if

Inequality 27 is violated as well, the agent would have chosen low effort, had the

bailout mechanism not been in place. This situation captures the

efficiency-enhancing signaling property of public bailouts described in Section IV.3.

Overall, it is observed that the signaling effect is less probable when the agent’s

failure causes tremendous social cost, as the agent is more prone to moral hazard. I

now contrast the two outcomes described in Theorems 7 and 8 in regard to the

principal’s welfare.

IV.4.3 Principal’s Welfare

If effort is extremely costly, so that Inequality (26) is satisfied and Inequality (27) is

violated, the agent will shirk regardless of a bailout proposal. Hence the bailout

makes the principal worse off, since the (low-type) agent will accept it. If, on the

other hand, effort is very cheap and Inequality (26) is violated and Inequality (27) is

satisfied, the agent will exert high effort in either case and reject the bailout, if

offered. Hence, the principal does not gain or lose by proposing a bailout.

To analyze the principal’s well-being in the more interesting cases where

Inequalities (26) and (27) are either both satisfied or both violated, I denote the

principal’s (expected) welfare by WNB under a no-bailout policy and by WMH and

WS in cases where the bailout causes moral hazard and allows for signaling,

respectively. As discussed previously, the latter two outcomes are mutually
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exclusive, and it depends to a certain extent on the social cost of and which of the

two outcomes are possible.

Considering first the case of moral hazard, that is when both inequalities are

satisfied, note that the agent would exert high effort without the bailout, but low

effort otherwise. The principal’s welfare without bailout is thus

WNB = W0 − pH(0) c = W0 − αHc,

while the presence of a bailout yields

WMH = W0 − pL(b∗) c− b∗ = W0 −
(
αLc

ββ

) 1
1+β

− (αLcβ)
1

1+β + 1.

Substituting b∗ = (αL β c)
1

1+β − 1 and simplifying

WMH = W0 − 1− c
1

1+βα
1

1+β

L

(
(
1

β
)

1
1+β + β

1
1+β

)
.

The sign of WMB −WNB is ambiguous in general. Note that WNB and WMH are

indirectly dependent on the choice of agent’s effort e since Inequalities (26) and (27)

need to be satisfied and e will determine αL and αH . If e is fixed so that both

inequalities are satisfied, then WMH and the difference WMB −WNB will depend on

the magnitude of the social cost parameter c. First, note that when c = 0,

WNB > WMH trivially. Second, note that both WNB and WMH are decreasing in c.

Furthermore, while WNB is linear with a slope of αH , which is a constant, WMH

is convex in c when β > 0. Therefore, one can deduce that the gap between WNB

and WMH is widening for small values of c, but for larger values of social cost c this

is no longer the case. The parameters α and β are critical, since when WMH > WNB

is the case, the principal may be better off by offering a bailout, even with the moral
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hazard problem. For illustrative purposes, Figures 7 and 8 demonstrate various

cases depending on the exogenous parameters.

c

W

WNB

WMH (β = 2)

WMH (β = 3)

WMH (β = 1)

WMH (β = 0.6)

WMH (β = 0.8)

Figure 7: Principal’s welfare under high risk of failure ; 1 > αL > αH > 0.5. WNB denotes
the expected welfare when the principal commits to a no-bailout policy, WMH denotes the
expected welfare when a bailout policy leads to moral hazard.

Conversely, when Inequalities (26) and (27) are both violated, the presence of a

bailout mechanism introduces a signaling opportunity. The principal’s respective

welfares under no bailout and under a bailout offer with signaling are

WNB = W0 − αL c,

and

WS = W0 − αH c.

Clearly, the principal is better off when offering the bailout (since it induces high

effort and will be rejected). The agent is also better off with the bailout (after all,
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c

W

WNB

WMH (β = 2)

WMH (β = 1)

WMH (β = 0.8)
WMH (β = 0.6)

WMH (β = 3)

Figure 8: Principal’s welfare under low risk of failure ; αL > 0.5 > αH > 0. WNB denotes
the expected welfare when the principal commits to a no-bailout policy, WMH denotes the
expected welfare when a bailout policy leads to moral hazard.

he could simply ignore it). In fact, when Inequalities (26) and (27) are both

violated, the bailout offer b∗ is efficient.

IV.5 Conclusion

Market failures and the presence of social costs serve as the main justifications for

government protection for private firms in case of bankruptcy risks. However, public

bailouts remain controversial since they have unintended consequences. The

asymmetries of information and action (or incentive) lie at the heart of the bailout

question leading to problems of adverse selection and moral hazard.

From a game-theoretic setup, the principal-agent models help us to analyze

bailout situations in order to guide both policy and practice, although tracing the

full consequences of bailout policies in practice is a difficult task. The model I
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discussed in the chapters III and IV follow the literature on principal-agent models

by encompassing asymmetric information, hidden action and endogenous risk of

failure.

I argue that the bailout offers made by the public policymakers to private agents

create an immediate and costly signaling opportunity for the participants. By

accepting the government protection plan, an agent explicitly or implicitly reveals

critical information about his financial situation, which is private information. The

same logic is used for a financially sound and a self-confident agent who rejects the

bailout offer in expectation for an appreciation in market valuation.



Appendix A

APPENDIX TO CHAPTER II

A.1 Proofs of Theorems in Chapter II

Proof of Theorem 1. It can be checked that FGNU satisfies PO, INV, and WLIN. I

will show that PO, INV and WLIN imply F = FGNU .

First, by translation invariance, d can always be normalized to the origin (d = 0)

so that a bargaining problem can be denoted simply as S instead of (S, d). Note that

scale invariance is equivalent to the axiom INV, when d is normalized to the origin.

Next, let Σ′ denote the set of n-person bargaining problems with d = (0, . . . , 0)

and m = (1, . . . , 1). By INV, any bargaining problem S ∈ Σ can be represented by a

bargaining problem S ′ ∈ Σ′. Specifically, for any S ∈ Σ I define

S ′ = {( si
mi

)i∈N |s ∈ S}

Note that WLIN is equivalent to LIN when restricted to Σ′.

Then by PO, WLIN, and Theorem 1 of Myerson (1981), there exists a vector

µ ∈ Rn
+ such that µF (S ′) ≥ µs′ for all s′ ∈ S ′. By INV and letting µ′ = ( µi

mi
), it

follows that µ′F (S) = µ(Fi(S)
mi

) ≥ µ′s = µ( si
mi

) for all s ∈ S. That is, F over Σ must

be generalized normalized utilitarian.

F (S) = arg max
s∈S

∑
i∈N

µi
si
mi

65
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Another proof of Theorem 1. Rescale any bargaining problem using INV. For any

S ∈ Σ, define T = Φ(S), T k = Φk(T ) as defined previously and for some µ > 0,∑
i µi = 1 define ∆µ = µ1T

1 + . . .+ µnT
n.

By PO, the elements of F (∆µ) must lie on the Pareto frontier of ∆µ and

F (∆µ) ⊆ B(∆µ). Then, by the Supporting Hyperplane Theorem (see Rockafellar

1970, Section 11, Corollary 11.6.2), for any δ∗ ∈ F (∆µ) there exists a linear function

f that achieves its maximum over ∆µ at δ∗. So for some γ � 0, f(δ) = γ · δ and

δ∗ ∈ arg max∆ f(δ). The elements of F (∆µ) maximize the sum
∑

i µiti for all t ∈ T

since δi =
∑

i µiti. By WLIN, it must also be true that the elements of F (S)

maximizes the sum
∑

i µi
si
mi

.

Proof of Theorem 2. As in Theorem 1, let S ′ = {( si
mi

)i∈N |s ∈ S}. For any

s∗ ∈ F (S), F is GNU , there exists µ ∈ Rn
+, µ 6= 0 such that

µ · ( s
∗
i

mi
)i∈N = maxs′∈S′(µ · s′), for all S ∈ Σ. Then, by AN, µ can be rewritten as

µ = µ̄e for some number µ̄ > 0 with e denoting the vector of ones e = (1, . . . , 1).

Otherwise, µ · π(
s∗i
mi

)i∈N is not maximal for some π ∈ Π.

Then

F (S) = arg max
s∈S

µ̄
∑
i∈N

si
mi

= arg max
s∈S

∑
i∈N

si
mi

= FNU(S)

Another proof of Theorem 2. It is straightforward to check that ∆µ is symmetric

when µi = µj for all i, j ∈ N . By PO, the elements of F (∆µ) must lie on the Pareto

frontier of ∆µ and F (∆µ) ⊆ B(∆µ). Since ∆µ is symmetric, we have δ∗ ∈ F (∆µ)

when δ∗i = δ∗j for all i, j ∈ N by AN.

If δ∗ is an extreme point of ∆µ, then F (∆µ) is singleton and δ∗ is the unique

solution where all coordinates are equal.
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If δ∗ is not an extreme point then δ∗ = λδ′ + (1− λ)δ′′ for some δ′, δ′′ ∈ F (∆µ).

Note also that by AN, we have π(δ) ∈ F (∆µ) for all π ∈ Π for any δ ∈ F (∆µ). Then

F (∆µ) is the collection of points on the Pareto frontier that lie on the hyperplane

passing through δ∗. In this case the solution is multi-valued.

In each case F (∆µ) maximizes the sum
1

n

∑
i

δi, implying µ = (
1

n
, . . . ,

1

n
).
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APPENDIX TO CHAPTER III

B.1 Samaritan’s Dilemma

The Biblical parable of the Good Samaritan appears in Luke 10:25-37. Traveling

from Jerusalem to Jericho, the Samaritan encounters a Jewish traveler, who was

beaten, robbed, and “left half dead” along the road. While a priest and then a

Levite pass by and refuse to lend a hand, the Samaritan helps the Jewish traveler

and his act is highly applauded as a selfless act.

The Samaritan’s Dilemma, introduced by Buchanan (1975), reflects the

characteristics of the modern welfare state and emphasizes the role of the

time-inconsistency problem. I will briefly describe the bailout game in Buchanan’s

framework by considering a simple bailout game played by the government (the

principal) and a firm (the agent).

The firm, as a nature of its business activities, faces the risk of bankruptcy.

Against this risk, the firm engages in activities related to risk management in

various levels. The degree of risk management is reduced to two levels for simplicity.

The government wants to help the firm against the risk of bankruptcy in order to

avoid the dead-weight costs, has an option to help the firm. The government’s

preferences are ranked from highest to lowest as following:

(3) The firm chooses high effort and the government helps.

(2) The firm chooses low effort and the government helps.
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(1) The firm chooses high effort and the government does not help.

(0) The firm chooses low effort and the government does not help.

In response, the agent’s preferences are ranked from highest to lowest as:

(3) The firm chooses low effort and the government helps.

(2) The firm chooses high effort and the government helps.

(1) The firm chooses high effort and the government does not help.

(0) The firm chooses low effort and the government does not help.

Low Effort High Effort
Help 2,3 3,2
Do Not Help 0,0 1,1

Table 3: The bailout game and the Samaritan’s Dilemma

Given these preferences, the game is set out in normal form in Table 3, in which

the government is the row player and the firm is the column player. Checking the

payoff matrix, the firm does not have a dominant strategy. If the government does

not help, the firm’s best response is to choose high effort. If the government decides

to help, the firm is better of by choosing low effort. The government, however, has a

dominant strategy to help to the firm. Whether the firm chooses low or high effort,

the best response of the government is to help. Given that the firm is informed

about the government’s preferences, (2,3) is a Nash equilibrium in which neither

party can improve independently deciding to do something else.

Consider the following modification to the game which involves strategic

considerations on the part of the government. Suppose that the government

convincingly announces that the Low Effort-Help option is the least preferred

outcome. A credible pre-commitment to an alternative ranking of preferences by

principal is as follows:
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(3) The firm chooses low effort and the government does not help.

(2) The firm chooses high effort and the government helps.

(1) The firm chooses high effort and the government does not help.

(0) The firm chooses low effort and the government helps.

Low Effort High Effort
Help 0,3 2,2
Do Not Help 3,0 1,1

Table 4: The modified bailout game

In the modified version of the game, as depicted in Table 4, neither the government

nor the firm has a dominant strategy. On the one hand, if the firm chooses high

effort, the government’s best response is to help, and on the other hand if the firm

chooses low effort, the government’s best response is not to help. The agent’s best

responses are the same as in the original version. But the best possible outcome

(0,3) for the firm is ranked at the bottom of the government’s preferences. The

second best option for each player coincides at (2,2) where the firm puts high effort

and the government helps. Note that this option is ranked as the best outcome in

government’s original preferences.

This solution heavily relies on the credibility of the government’s

pre-commitment to the modified ranking of preferences. If the firm believes strongly

that the government’s true preferences are as in the original version, the

government’s pre-commitment is no longer credible. The agent may simple call the

government’s bluff and chooses low effort.
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B.2 Proofs of Theorems in Chapter III

Proof of Lemma 1. From (2) the principal’s first order condition is

Wb = −π − π ∂p
∂b

c = 0 (28)

and the second order condition is

Wbb = −π ∂
2p

∂b2
c < 0. (29)

Note that, by Assumption 3, the second order condition is satisfied. Since each

player moves only once, with one step of backward induction, we can treat b as a

function of e. Since Equation (28) is an identity, differentiating Wb(b(e), e) = 0

totally with respect to e we obtain

−π c
(
∂2p

∂b2

db

de
+

∂2p

∂b∂e

)
= 0,

that is

db

de
= −

∂2p
∂b∂e
∂2p
∂b2

.

By Assumption 3 the last expression is negative so we have b′(e) < 0.

Proof of Proposition 1. By Equation (1), the agent’s first order condition is

−v′(e)− π
[
∂p(e, b)

∂e
+
∂p(e, b)

∂b

db

de

]
u(y) = 0. (30)

Let b∗ and e∗ denote the (joint) solutions to Equations (28) and (30).
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Alternatively, if the principal chose not to bail out the agent regardless of effort,

that is b∗∗(e) ≡ 0, Equation 30 becomes

−v′(e∗)− π
[
∂p(e∗, 0)

∂e

]
u(y) > 0, (31)

by Assumption 3(c) and since
db∗∗

de
= 0.

Denoting by e∗∗ the level of effort that satisfies the no-bailout first order

condition 31, we find e∗ < e∗∗ by Assumptions 2 and 3(c). Hence, e∗ is inefficient.

Note that by pre-committing to b̄ = b∗, the principal is better off as well.

Proof of Theorem 3. Since effort is unobservable, the agent takes b∗ as given and

chooses e = e∗ to maximize

U(e) = u(y)− v(e)− π p(e, b∗)u(y).

This yields the first order condition

−v′(e∗)− π
[
∂p(e∗, b∗)

∂e

]
u(y) = 0. (32)

If b∗ > 0, and similarly to the proof of Proposition 1, it follows from Assumption

3(c) that the right-hand-side of Equation 32 would be positive if no bailouts were

offered. Thus, again, we find that e∗ < e∗∗, where e∗∗ denotes the optimal level of

effort without a bailout. That is, e∗∗ is chosen to satisfy

−v′(e∗∗)− π
[
∂p(e∗∗, 0)

∂e

]
u(y) = 0.

Lastly, we want to point out that b∗ is given as the solution to

∂p(e∗, b∗)

∂b
=
−1

c
.
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By Assumption 3(b), the optimal bailout transfer b∗ is thus increasing in the social

cost c. Hence, b∗ > 0 for sufficiently large c.

Proof of Proposition 2. Using the Implicit Function Theorem, we differentiate one

agent’s first order condition with respect to other agent’s optimal choice of effort.

(
∂2π

∂e1∂e2

+
∂2π

∂2e1

de1

de2

)
p1 +

∂π

∂e1

∂p1

∂e1

+
∂2p1

∂e1
2

de1

de2

π +
∂p1

∂e1

(
∂π

∂e1

de1

de2

+
∂π

∂e2

)
= −v

′′
1(e1)

u(y1)

de1

de2

.

Solving for
de1

de2

we obtain

de1

de2

= −
∂2π

∂e1∂e2
p1 + ∂p1

∂e1
∂π
∂e2

v′′1 (e1)

u(y1)
+ ∂2π

∂e21
p1 + ∂π

∂e1

∂p1
∂e1

+ ∂2p1
∂e12

π + ∂p1
∂e1

∂π
∂e1

By Assumption 4, both the numerator and denominator are positive, which

concludes the proof.
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APPENDIX TO CHAPTER IV

C.1 Proofs of Theorems in Chapter IV

Proof of Lemma 3. Let b ≥ 0 be given and fixed. Since p′H(b) > p′L(b), we must have

pL(0)− pL(b) > pH(0)− pH(b).

Moreover, since pL(0) > pH(0) and pL(b) > pH(b), we get

1− pH(b)

1− pH(0)
= 1 +

pH(0)− pH(b)

1− pH(0)
< 1 +

pL(0)− pL(b)

1− pL(0)
=

1− pL(b)

1− pL(0)
.

Proof of Lemma 5. When ψ = (R,A), the principal’s expected welfare function is

WRA(b) = W0 − µ pH(0)c− (1− µ) [b− pL(b) c].

Taking the first-order condition with respect to b yields the desired result.

Proof of Theorem 5. Follows from Lemmas 4 and 5.

Proof of Theorem 6. It is left to verify the condition for choosing low versus high

effort.
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Under Assumption 9, the agent’s expected utility from choosing low effort is

EUL ≡ pL(b∗) · 0 + [1− pL(b∗)] · uLL,

and the agent’s payout from exerting high effort is

EUH ≡ pH(0) · 0 + [1− pH(0)] · uHH − vτH .

Since it is optimal to choose e = 0 if and only if EUL > EUH , we obtain Inequality

(19).

Proof of Theorem 7. Follows immediately from Theorem 6 and Proposition 4.

Proof of Theorem 8. Combine Theorem 6 and Proposition 4.
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